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ABSTRACT
Acoustic telemetry offers valuable opportunities to investigate individual variability in circadian-related and other behaviours and 
how environmental cues shape these patterns in wild fish populations. However, this potential has not yet been fully exploited. 
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We conducted a meta-analysis on 44 datasets from 34 distinct marine and freshwater species and different types of data (acous-
tic detections, depth, acceleration and positioning). Our aim was to explore the potential of acoustic telemetry in identifying 
chronotypes as consistent among-individual differences in circadian-related behaviours. First, we applied hidden semi-Markov 
models to classify individual time series into active and rest states. Subsequently, we computed two classical circadian-related 
behavioural traits: awakening time (as the activity onset) and rest onset (as the activity offset). Subsequently, we identified dis-
tinct phenotypes by decomposing behavioural variation into within- and among-individual components based on repeatability 
scores. We found evidence of distinct chronotypes in 17 species, with average repeatability scores of 0.52 for awakening time and 
0.43 for rest onset, revealing that chronotypes are common in aquatic species. Our findings highlight that both the data type, 
particularly acceleration sensors, and the number of detections are effective tools for exploring chronotypes. Our study proposes 
a novel approach to characterising daily activity patterns in aquatic species, predominantly in fishes, and provides guidelines 
for investigating chronotypes across diverse taxa. We emphasise the promise of biotelemetry and advanced statistical models for 
improving our understanding of the behaviour of aquatic species and highlight the value of synthesising across large data sets 
collected in networks of biotelemetryprojects.

1   |   Introduction

Chronotypes are defined as among-individual differences in 
circadian-related behaviours, which remain relatively stable 
over time due to the regulation of the internal circadian clock 
and are modulated by environmental and anthropogenic fac-
tors (Ehret  1974; Helm et  al.  2017; Roenneberg et  al.  2007). 
The circadian-related behaviours commonly considered to 
identify chronotypes are the timing of activity onset and offset 
(Roenneberg et al. 2003). In humans, chronotypes have been ex-
tensively studied due to their link to sleep, well-being and health 
(Navara and Nelson  2007) and are often categorised along a 
morning–evening continuum. Morning types, as the name 
suggests, tend to favour morning activities, typically starting 
their activity and rest earlier, with their cognitive and physical 
performance peaking earlier in the day. By contrast, evening 
types prefer evening activities, generally starting their activity 
and rest later, with their optimal cognitive and physical perfor-
mance occurring later in the day (Bauducco et al. 2020; Webb 
and Bonnet 1978).

In animals, chronotypes are often characterised by consistent 
among-individual differences in activity-rest patterns, ful-
filling the criteria of conventional behavioural types (Réale 
et  al.  2007; Sih et  al.  2004). Accordingly, chronotypes can 
be estimated using the repeatability (R) score, a widely used 
index for identifying behavioural types (Dingemanse and 
Dochtermann  2013). The R score represents the proportion 
of the total variance in a behavioural metric of interest that 
is explained by differences among individuals (Nakagawa 
and Schielzeth  2010). Various authors have used R scores 
to describe chronotypes in terrestrial animals (Chmura 
et  al.  2020; Dominoni et  al.  2013, 2014; Graham et  al.  2017; 
Maury et al. 2020; Rittenhouse et al. 2019; Schlicht et al. 2014; 
Schlicht and Kempenaers  2020; Steinmeyer et  al.  2010; 
Stuber et  al.  2015). This body of evidence suggests that, as 
in humans, other terrestrial animals also display consistent 
among-individual differences in circadian-related behaviours. 
However, chronotypes have often been overlooked in aquatic 
animals (Bloch et al. 2013; Helm and Visser 2010). Numerous 
studies indicate that fish exhibit chronotypes (Slavík and 
Horký 2012; Závorka et al.  2016), supported by an extensive 
body of literature on circadian rhythms in fishes in laboratory 

settings (Blanco-Vives and Sánchez-Vázquez  2009; López-
Olmeda et  al.  2006; Lucas-Sánchez et  al.  2013; Reebs 2002). 
Generally, there have been very few attempts to estimate the 
R scores of circadian-related behaviours in the wild (but see 
Alós et al. 2017 and Martorell-Barceló et al. 2024 for a set of 
studies in Xyrichtys novacula (Labridae)).

The determination of chronotypes relies on fine-scale moni-
toring of activity-rest cycles under natural conditions in a suf-
ficiently large number of individuals to effectively disentangle 
individual and population-level sources of behavioural variation 
(Roenneberg et al. 2007). In humans, chronotypes are typically 
measured using a combination of sleep measurements collected 
through activity telemetry devices and questionnaires that show 
the individual's sleep preferences (Di Milia et al. 2013). In ter-
restrial animals, various techniques have been used to measure 
activity-rest patterns, including infrared beams, video analysis, 
pressure plates, jiggle cages, locomotor activity cages, telemet-
ric devices and accelerometer monitors (Mann et al. 2005). In 
aquatic environments, traditional techniques for monitoring the 
behaviour of free-living animals have not been readily avail-
able, limiting our understanding of the particularities of chro-
notypes in aquatic organisms (Helm et al. 2017). Over the past 
two decades, advances in acoustic telemetry have significantly 
improved our ability to monitor free-living aquatic populations 
(Hussey et al. 2015), providing novel opportunities to study chro-
notypes in large numbers of individuals (Nathan et al. 2022).

Acoustic telemetry is the most widely used tracking system 
for aquatic environments and has become a powerful tool to 
improve our knowledge of the behaviour, ecology and conser-
vation of fish (Lennox et  al.  2023; Matley et  al.  2022). This 
technology is based on implanting an acoustic transmitter in 
the fish, which emits codified signals with unique identifiers 
(Lennox et  al.  2023). These signals are typically detected by 
an array of receivers strategically deployed within the study 
area (Heupel et al. 2006). Acoustic telemetry has been used to 
identify diel activity–rest patterns in various species in both 
freshwater and marine environments. Some examples are 
Perca fluviatilis (Percidae; Nakayama et al. 2018), Silurus gla-
nis (Siluridae; Brevé et al. 2014), Cyprinus carpio (Cyprinidae; 
Monk et  al.  2023), Serranus cabrilla (Serranidae; Alós 
et  al.  2011), Serranus scriba (Serranidae; March et  al.  2010), 
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Labrus bergylta (Labridae; Villegas-Ríos et  al.  2013), 
Diplodus sargus (Sparidae; Aspillaga et  al.  2016), Dentex 
dentex (Sparidae; Aspillaga et  al.  2017), Cheilinus undulatus 
(Labridae; Chateau and Wantiez  2007), Pterois volitans and 
Pterois miles (Scorpaenidae; McCallister et al. 2018), Naso uni-
cornis and Naso lituratus (Acanthuridae; Marshell et al. 2011), 
Chlorurus sordidus, Scarus ferrugineus and Scarus fucropur-
pureus (Scaridae; Pickholtz et al. 2022). None of these studies, 
however, specifically addressed the role of circadian-related 
behaviours to determine the existence of chronotypes in these 
species. Notably, only Alós et al. (2017) and Martorell-Barceló 
et  al.  (2023, 2024) utilised a combination of hidden Markov 
models (HMMs; Patterson et al. 2009) and acoustic detection 
time-series data to effectively decompose the population- and 
individual-variance components for circadian-related be-
haviours, providing robust evidence for the existence of chro-
notypes in X. novacula. To date, the full potential of acoustic 
telemetry in exploring chronotypes in a set of species remains 
underexplored.

Acoustic transmitters can also be complemented with sensors 
that record environmental parameters such as temperature 
and depth, or even measures of body acceleration as a di-
rect indicator of activity levels (Cooke et al. 2004; Donaldson 
et al. 2014; Hussey et al. 2015). Acceleration sensors are partic-
ularly useful at detecting activity-rest patterns. For instance, 
Carcharinus perezi (Carcharhinidae) exhibits greater activity 
levels at night, associated with foraging (Shipley et al. 2018). 
Depth sensors are also efficient to detect activity-rest pat-
terns. Shifts in individual vertical distribution, resulting in 
daily behavioural patterns, are widespread among aquatic 
organisms (Neilson and Perry  1990; Watanabe et  al.  1999). 
Andrews et al.  (2009) used acoustic tags with depth sensors 
in Hexanchus griseus (Hexanchidae) to show that individuals 
inhabited deeper and colder waters during daytime and ac-
tively hunted in shallower and warmer waters. Individuals 
may also exhibit daily behavioural patterns in their space 
use from pelagic to littoral sites (Monk et al. 2023; Nakayama 
et  al.  2018). Acoustic telemetry is particularly valuable in 
discerning these ‘horizontal daily’ migrations, as it not only 
offers detections and sensor data but also provides positional 
information and detailed daily activity-rest patterns. For ex-
ample, Watson et al. (2019) showed that some Oncorhynchus 
mykiss (Salmonidae) used different areas of a lake for foraging 
during the day and resting at night.

Although previous evidence suggests that using acoustic te-
lemetry along with associated sensors is a valuable approach 
to assess chronotypes, this method presents three significant 
challenges. First, depending on the setup of the acoustic net-
work, if the receiver density is too low, detecting the activity 
onset and offset might be difficult and imprecise, making dif-
ferences among individuals undetectable. Second, depending 
on the transmitters' emission period, the temporal resolution 
may not be sufficient to disentangle the activity start and end 
times. Third, the number of individuals that can be tracked 
simultaneously is often limited due to signal collision in some 
coding systems. This occurs when multiple transmitters emit 
signals simultaneously on the same frequency, causing in-
terferences that prevent their detection (Binder et  al.  2016). 
Recent advancements in high-resolution telemetry systems 

mitigate some of these issues (Baktoft et  al.  2015; Lennox 
et al. 2023; Nathan et al. 2022). In particular, some of the new 
tracking systems address signal collision through improved 
emission protocols, such as the Binary Phase-Shift Keying 
(BPSK) coding system. This approach allows transmitters to 
emit short signals with a low probability of collision (< 1 ms; 
Aspillaga, Arlinghaus, Martorell-Barceló, Follana-Berná, 
et  al.  2021; Lennox et  al.  2023). Similarly, Code Division 
Multiple Access (CDMA) has been employed in some acous-
tic telemetry systems to address code-collision challenges. For 
example, the Lotek MAP system, as previously assessed (see 
Baktoft et al. 2015), uses CDMA to enable effective simulta-
neous tracking of multiple tagged individuals. Regarding the 
measurement of chronotypes, high-resolution telemetry sys-
tems not only allow us to evaluate the chronotypes by drasti-
cally increasing the number and frequency of detections but 
also allow for an increase in the number of monitored indi-
viduals, thereby enabling population-level studies necessary 
to accurately attribute individual differences to behavioural 
variation (Martorell-Barceló et al. 2023, 2024).

In this study, we compiled and analysed datasets from various 
acoustic telemetry studies that had purposes other than the 
study of chronotypes. Our objective was to explore the potential 
of acoustic telemetry for detecting circadian-related behavioural 
variations and to evaluate the possibility of computing R scores 
that describe chronotypes in different species. Our specific ob-
jectives were 1) to identify species-specific characteristics that 
allow for effective chronotype analysis using acoustic teleme-
try data; 2) to evaluate various types of data (detections, depth, 
activity, or positions) that can be used to capture circadian-
related behavioural variation, thereby improving chronotype 
estimation and 3) to compare R scores for chronotypes across 
several aquatic species. The results of this study enhance our 
understanding of circadian-related behavioural traits in wild 
aquatic populations and provide guidelines for designing future 
research to address chronotypes using acoustic telemetry.

2   |   Methods

2.1   |   Data Collection

We sourced telemetry datasets from various researchers across 
Europe and the Atlantic, including datasets retrieved through 
the European Tracking Network (ETN, https://​www.​europ​eantr​
ackin​gnetw​ork.​org/​en; Abecasis et al. 2018) and other telemetry 
networks (e.g., the Lake Telemetry Network; Jarić et al. 2023). 
These networks aim to reinforce the collaboration among re-
searchers and offer a more holistic understanding of animal 
movement patterns across varying spatial scales and species. We 
collected a total of 44 datasets covering 34 distinct aquatic spe-
cies, including marine and freshwater species, spanning a range 
of habitat types (see Table  S1). For datasets obtained directly 
from the ETN, we used the etn package (Huybrechts et al. 2025) 
developed for R software (R Core Team 2022). All datasets were 
based on acoustic telemetry data. When available, data from 
built-in sensors (depth and activity) or positioning from high-
resolution telemetry systems were also included. These datasets 
also contained information about the body size of the tracked 
individuals.
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For statistical reasons, a minimum number of tracked animals 
is required to determine whether a species exhibits chronotypes. 
Consequently, datasets with fewer than seven individuals were 
excluded from further analyses. Although there is no strict rule 
on the minimum number of individuals required, our previ-
ous experience suggests that seven individuals is a reasonable 
threshold to obtain robust results. In one case, two datasets be-
longing to the same genus (S. ferrugineus and S. fuscopurpureus) 
were combined to form a unique dataset (Scarus) to achieve the 
minimal sample size (see Table S1), assuming that both species 
present similar behaviour (Pickholtz et al. 2022). The remaining 
datasets were visually inspected to identify the individuals with 
clearly defined activity-rest patterns (as shown in Figure 1B–F; 
Table  1). For this purpose, we examined the general activity 
patterns of each individual on a 3-h basis: number of detections 
(Figure 1A,B), activity (Figure 1C,D) and depth (Figure 1E,F). 
We excluded six datasets when a clear day–night pattern could 
not be identified (e.g., Figure  1A; see Table  S1). The absence 
of a clear pattern in these datasets was primarily caused by a 
lack of data as a consequence of the experimental design, which 
was not conducive to collecting data for effectively estimating 
activity-rest patterns. This exclusion does not suggest the ab-
sence of chronotypes in these species but rather indicates that 
the data collection methodology used was not suitable for our 
specific objectives.

Each selected dataset was processed using specific time steps, 
chosen independently for each case based on the species’ be-
haviour and the nature of the data: number of detections, mean 
step lengths between consecutive positions, depth, or activity. 
To select the most suitable time step for each dataset, we created 
temporal sequences with 5, 10 and 15-min intervals. For each 
specific case, we then chose the shortest time step that most ac-
curately captured individual variation and represented the day/
night cycle. We acknowledge that diel variation in receiver de-
tection efficiency may affect detection-based metrics; however, 
our analysis focuses on inter-individual differences in timing, 
which are less likely to be confounded by this effect. This ap-
proach allowed us to adapt to the biological and methodological 
characteristics of each dataset (e.g., species mobility, tag type or 
density of receiver network), ensuring that the time resolution 
was appropriate. The selected time step for each dataset is de-
tailed in Table 1.

2.2   |   Fitting Hidden Semi-Markov Models

For the computation of the circadian-related behavioural traits, 
following Alós et  al.  (2017), we randomly selected data from 
15 consecutive days for each individual and decomposed the 
individual time series into a temporal sequence of behavioural 
states (active vs. resting) using a hidden semi-Markov model 
(HSMM) approach (Guédon 2003). The HSMM was fine-tuned 
to the characteristics of each dataset by adjusting the initial dis-
tribution and accounting for the diurnal or nocturnal activity 
patterns of the species. The duration of a state in a conventional 
HMM follows a geometric distribution, which leads to an expo-
nential decrease in the likelihood of remaining in the same state 
over time. An HSMM accommodates a wider array of state dura-
tion distributions, thereby specifically modelling the time spent 
in each state, which is particularly interesting for decomposing 

diel behaviours (Guédon  2003). Furthermore, state transitions 
in an HSMM take place after a variable number of time steps, as 
dictated by the state duration distribution. HSMMs offer a bet-
ter fit for certain types of data due to their additional flexibility 
in modelling state durations, despite requiring more computa-
tional resources for training and analysis compared to conven-
tional HMMs. Through this approach, we could customise the 
model to incorporate specific parameters for species and indi-
viduals. We applied the HSMM with the function hsmmfit from 
the package mhsmm (O'Connell and Højsgaard 2011) for the R 
software (R Core Team  2022). The final output for each indi-
vidual time series was a temporal sequence of two behavioural 
states (active vs. rest), which was used to compute the awaken-
ing time and rest onset.

2.3   |   Computation of the Circadian-Related 
Behavioural Traits

Based on the results of the HSMM, we assumed that a higher 
number of detections, higher activity, deeper depths and lon-
ger distances between positions indicated periods of activity. 
This assumption was needed for the computation of circadian-
related behavioural traits, although their implications are ad-
dressed in subsequent sections. We categorised our datasets as 
diurnal if all individuals exhibited maximum activity during 
the day, as nocturnal if their peak activity was during the night, 
and as dual if containing both diurnal and nocturnal individ-
uals. We recognise that this assumption might not perfectly 
capture reality, but such two-state categorisation is necessary 
for the computation of the circadian-related behavioural traits 
and is independent of the R scores estimation for chronotypes. 
We used the local sunrise and sunset data, considering their 
daily variations, for each acoustic tracking experiment to cal-
culate two circadian-related behavioural traits: awakening 
time as the activity onset (min) and rest onset as the activity 
offset (min). For diurnal individuals, we defined the awaken-
ing time relative to sunrise and rest onset relative to sunset. 
Conversely, for nocturnal individuals, we defined the awak-
ening time relative to sunset and rest onset relative to sun-
rise. Days in which the awakening time occurred after half of 
the daytime or rest onset past the midpoint of the nighttime 
were excluded from the subsequent analyses. For the diurnal 
individuals, we removed days with less than half the daytime 
of activity (activity < (sunrise—sunset) / 2). Similarly, for the 
nocturnal individuals, we removed days with less than half 
the nighttime of activity (activity < (sunset—sunrise (n + 1)) 
/ 2). At this stage, we excluded additional datasets in subse-
quent analyses due to the low number of individuals meeting 
the specified conditions. Finally, we considered 17 datasets 
from 16 freshwater and marine species in the final analyses.

2.4   |   Raw Repeatability

We calculated the raw R as an initial approach to investigate 
how consistent among-individual differences are in awaken-
ing time and rest onset. Raw R refers to the proportion of total 
variance in the trait that is attributed to differences among 
individuals, without accounting for potential confounding 
factors or covariates (Nakagawa and Schielzeth  2010). For a 
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specific trait, the raw R score was calculated as the between-
individual variance Vind0 divided by the sum of Vind0 and 
the within-individual variance (or residual variance, Ve0). 
To properly decompose the raw phenotypic variance into 
between- and within-individual variances, we fitted a gen-
eralised linear mixed model (GLMM) to each dataset and 
circadian-related behavioural trait, using the MCMCglmm 
library (Hadfield  2010) built for the R software following 
Dingemanse and Dochtermann (2013). We fitted one GLMM 
to each dataset, including awakening time or rest onset as a 
response variable, the size of the individual as a fixed effect 
and the identifier (ID) of the individual as a random effect. 
We included the size as the unique common variable between 
datasets because we needed a fixed factor in order to run it. To 
assess the statistical significance of the R score, we combined 
the confidence intervals with the difference in the Deviance 
Information Criterion (DIC) between the complete GLMM 
and the constrained model (i.e., the model without the random 
effect, DICc). If this difference exceeded two and the confi-
dence interval did not include zero, the R score was considered 
statistically significant (Alós et al. 2017; Harrison et al. 2015). 
The significance of body size (in cm) was indicated by the 
Markov Chain Monte Carlo p-value (pMCMC).

3   |   Results

We computed R scores for the awakening time and rest onset 
in 17 datasets for 16 different marine and freshwater species 

(Table 1; Figure 2). Remarkably, 82% of datasets for awakening 
time and 94% for rest onset showed statistically significant R 
scores, ranging from 0.22 to 0.81 for awakening time and from 
0.09 to 0.86 for rest onset. Statistically significant R scores were 
obtained for 14 datasets regarding awakening time and for 16 
datasets regarding rest onset. The mean (± standard deviation) 
of these significant R scores was 0.52 ± 0.20 for awakening time 
and 0.43 ± 0.23 for rest onset, suggesting the presence of chro-
notypes across these datasets (Figure 2). The species with the 
highest R score, 0.81 [0.55–0.86], for awakening time was Salmo 
trutta (Salmonidae). The individual with the earliest awakening 
time (ST02) started its activity, on average, 343.75 min before 
sunrise, while the individual with the latest awakening time 
(ST03) started its activity, on average, 348 min after sunrise. The 
difference between these individuals in awakening time was 
691.75 min (see Table S2). The species with the highest R score, 
0.86 [0.71–0.95], for rest onset was C. carpio. The individual 
with the earliest rest onset (CC01) started its rest, on average, 
207.67 min after sunset, while the individual with the latest rest 
onset (CC03) started its rest, on average, 544 min after sunset. 
This represents a difference of 336.33 min between them (see 
Table  S2). Additionally, the species that exhibited the highest 
combined R score for both circadian-related behavioural traits 
was Epinephelus morio (Epinephelidae), 0.80 [0.72–0.87] for 
awakening time and 0.81 [0.76–0.87] for rest onset.

In the GLMM, we included body size as a fixed effect, as the 
unique common variable between datasets (Table 2). For most 
datasets, the effect of body size on awakening time was not 

FIGURE 1    |    Temporal sequence for the identification of activity-rest patterns. Examples of 3-h temporal sequences illustrating datasets with and 
without clear day/night patterns. The number of detections, activity and depth are shown in blue. Night-time periods are shaded in grey. The first 
row presents examples of acoustic detection (number of detections in 3 h): (A) Sequence without a clear day/night pattern from Diplodus vulgaris. (B) 
Sequence with a clear day/night pattern from the Epinephelus morio. The second row shows activity data (average m/s in 3 h): (C) Sequence with a 
clear day/night pattern from the Scarus dataset. (D) Sequence with a clear day/night pattern from Sander lucioperca. The third row displays depth 
data (average depth (m) in 3 h): (E) Sequence with a clear day/night pattern from Gadus morhua (GM_IMR dataset). (F) Sequence with a clear day/
night pattern from Labrus bergylta.
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1139Fish and Fisheries, 2025

statistically significant, as indicated by wide 95% credible in-
tervals (CI) that included zero and pMCMC values greater than 
0.1 (Table 2). However, D. sargus (DS_UB dataset) showed a 
statistically significant negative effect of size on awakening 
time (Table 2), suggesting that larger individuals started their 
activity earlier than smaller individuals. Regarding rest onset, 
negative statistically significant effects were observed for E. 

morio, Sander lucioperca (Percidae), Scarus sp. and X. novac-
ula (XN_JSATS dataset) (Table  2). This suggests that larger 
individuals of these species started their resting phase ear-
lier than smaller individuals. By contrast, L. bergylta showed 
a positive statistically significant effect (Table  2), suggest-
ing that larger individuals started their rest later than the 
smaller ones.

TABLE 1    |    Data used for the calculation of the R scores.

Species Dataset Data Interval N
Awakening 

time Rest onset

DIC 
dif 
AT

DIC 
dif 
RO

Activity 
pattern Size

Anguilla 
anguilla

AAn Det 10 10 0.29 
[0.25–0.56]

0.19 [0.12–0.38] 32 18 Nocturnal 73.1

Astacus 
astacus

AAs Det 5 7 0.00 
[0.00–0.42]

0.01 [0.00–0.47] 5 3 Nocturnal 52

Cyprinus 
carpio

CC Pos 10 7 0.28 
[0.11–0.59]

0.86 [0.71–0.95] 21 169 Diurnal 28.2

Dentex 
dentex

DD Depth 5 15 0.27 
[0.17–0.34]

0.21 [0.15–0.37] 43 59 Diurnal 56.8

Diplodus 
sargus

DS_UB Depth 5 12 0.35 
[0.25–0.53]

0.59 [0.36–0.68] 54 82 Dual 25.7

Epinephelus 
morio

EM Det 10 15 0.80 
[0.72–0.87]

0.81 [0.76–0.87] 256 310 Dual 54.4

Gadus 
morhua

GM_IMR Depth 5 35 0.56 
[0.47–0.65]

0.41 [0.27–0.46] 351 166 Diurnal 42.8

Labrus 
bergylta

LB Depth 5 15 0.47 
[0.39–0.72]

0.34 [0.26–0.41] 121 52 Dual 35.8

Perca 
fluviatilis

PF Pos 5 7 0.00 
[0.00–0.34]

0.58 [0.46–0.90] 8 91 Diurnal 36.3

Pollachius 
pollachius

PP Depth 5 9 0.39 
[0.26–0.52]

0.28 [0.19–0.40] 52 37 Dual 37.7

Serranus 
cabrilla

SCb Det 15 8 0.00 
[0.00–0.28]

0.46 [0.41–0.69] 4 46 Diurnal 15.1

Silurus 
glanis

SG_WUR Depth 5 13 0.44 
[0.25–0.56]

0.18 [0.11–0.32] 60 30 Dual 86.4

Sander 
lucioperca

SL Act 5 11 0.40 
[0.19–0.56]

0.66 [0.47–0.86] 52 127 Dual 43.8

Salmo trutta ST Depth 5 13 0.81 
[0.55–0.86]

0.23 [0.09–0.56] 44 16 Dual 36

Scarus sp. Scarus Act 5 7 0.78 
[0.61–0.87]

0.12 [0.06–0.31] 229 26 Diurnal 38.8

Xyrichtys 
novacula

XN_JSATS Det 5 30 0.77 
[0.73–0.86]

0.38 [0.24–0.44] 658 111 Diurnal 16.8

Xyrichtys 
novacula

XN_SUR Det 5 14 0.61 
[0.47–0.70]

0.65 [0.42–0.80] 115 109 Diurnal 18.4

Note: ‘Species’ refers to the scientific name of the species. ‘Dataset’ is the reference name of the dataset detailed in Table S1. ‘Data’ refers to the type of dataset 
(Det = detections, Pos = positions, Depth = depth and Act = activity). ‘Interval’ refers to the time step used to create the temporal sequences. ‘N' is the number of 
individuals included. ‘Awakening time’ and ‘Rest onset’ indicate the respective R score, with 95% confidence intervals in brackets. ‘Dic dif AT’ and ‘DIC dif RO’ 
represent the difference between DIC and DICc for awakening time and rest onset, respectively. ‘Activity pattern’ classifies the species as diurnal, nocturnal, or dual. 
Lastly, ‘Size’ indicates the mean total length (cm) of the individuals for each dataset.
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1140 Fish and Fisheries, 2025

Overall, our analysis showed that chronotypes were present in 
most suitable datasets. We thus conclude that chronotypes may 
be a common behaviour in aquatic species in both marine and 
freshwater systems.

4   |   Discussion

Our study provides the first comprehensive assessment of the 
contribution of individual variability in circadian-related be-
havioural traits (defining chronotypes) across a diverse range 
of wild marine and freshwater species, utilising acoustic te-
lemetry data for their identification. We highlight several 
key findings concerning the raw R scores for awakening time 
and rest onset. We managed to calculate raw R scores for 17 
datasets across 16 different species. Our findings suggest a 
potential existence of chronotypes across almost all species 
studied when their estimation was possible. Our findings sug-
gest that, in addition to the already described chronotypes in 
X. novacula (Alós et  al.  2017; Martorell-Barceló et  al.  2024), 
species such as Anguilla anguilla (Anguillidae), C. carpio, D. 
dentex, D. sargus, E. morio, Gadus morhua (Gadidae), L. ber-
gylta, Pollachius pollachius (Gadidae), S. glanis, S. lucioperca, 
S. fuscopurpureus, S. ferrugineus and S. trutta also exhibited 
consistent among-individual differences in both awakening 
time and rest onset,  indicating the presence of chronotypes 
in these species. Furthermore, P. fluviatilis and S. cabrilla 
showed significant repeatability for rest onset, indicating 
potential chronotypes, although this should be confirmed 
through additional studies. These results also show the power 
of acoustic telemetry as a tool to study the presence and, in 
turn, ecological consequences of chronotypes. Overall, this 
study represents the first attempt to investigate chronotypes 
across different freshwater and marine species.

We determined the variation in circadian-related behavioural 
traits derived from HSMM fitted to a time series of acoustic 
telemetry data. From the data obtained via acoustic detections 
and depth sensors, we were unable to directly assign with 
certainty a high number of detections to a specific activity 
state (diurnal vs. nocturnal). However, making this assump-
tion (a higher number of detections, deeper depths and lon-
ger distances between positions indicated periods of activity) 
is essential to enable the computation of the HSMMs, which 
are used to derive the awakening time and rest onset. It is im-
portant to acknowledge that this assumption may represent 
a potential limitation in our methodology, which future re-
search could aim to address more directly, including whether 
species are diurnal or nocturnal based on their hunter or feed-
ing behaviour instead of the number of detections. In specific 
cases, such as X. novacula due to its burying behaviour during 
nighttime, we are very certain that a higher number of detec-
tions reflected an increase in their activity (Alós et al. 2012). 
Furthermore, the small home range of this species ensures 
the continuous tracking of them (Aspillaga, Arlinghaus, 
Martorell-Barceló, Barcelo-Serra, and Alós 2021). However, in 
many other species, this diel pattern was less pronounced and 
remained more ambiguous. For example, in species like Solea 
senegalensis (Soleidae), it has been shown that a higher num-
ber of detections is associated with rest (Gandra et al. 2018). 
This may be due to the design of the receiver network, where 
fish are detected less frequently during periods of activity 
compared to when they are at rest and move less within the 
detection range of a receiver. A similar pattern is observed 
with depth sensor data. For instance, G. morhua is known to 
hunt actively in shallow habitats with limited receiver cover-
age (Olsen et al. 2012). In these species, lower detection counts 
or shallower depths tend to reflect periods of greater activity. 
Therefore, when interpreting detection and depth data within 

FIGURE 2    |    Raw repeatability scores. The R scores are presented for each dataset separated by awakening time and rest onset, representing the 
mean (dot) and confidence intervals (CI, 2.50 and 97.50). Dots and lines indicate the statistical significance of the values: solid and dotted for statis-
tically significant and dashed lines and triangles for non-statistically significant results. Violet vertical lines indicate the average R scores for signif-
icant values, 0.52 for awakening time and 0.43 for rest onset.
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acoustic arrays to study chronotypes, it is important to care-
fully consider the species' biology in relation to the strengths 
and limitations of the receiver network.

On the other hand, acceleration sensors are designed to detect 
variations in fish activity (Brown et al. 2013). We investigated 
two datasets with this type of data, and our results showed 
that these species exhibited statistically significant R scores. 
S. lucioperca had an R score of 0.33 and 0.64, and Scarus sp. 
0.74 and 0.15 for awakening time and rest onset, respectively, 
demonstrating that the activity sensors are very useful to de-
tect chronotypes when individuals are continuously detected 
and tracked. For acoustic positioning, we computed step 
lengths (distances between successive positions) as an alter-
native activity metric. We assumed that greater distances be-
tween positions indicated high activity levels, whereas shorter 
distances reflected resting periods. This method was applied 
in two datasets, where C. carpio showed statistically signif-
icant R scores for both traits, and P. fluviatilis showed a sta-
tistically significant R score for rest onset (see Table  1). By 
contrast, in Esox lucius (Esocidae; EL_IGB dataset) and Tinca 
tinca (Tincidae; TT_IGB dataset) using the same type of data, 

R scores could not be computed due to a limited number of in-
dividuals with suitable data. Most likely reasons are long gaps 
in data when the individuals hide in structures and are not 
detectable on acoustic arrays. It is important to note that step 
length measurements are highly dependent on the time inter-
val; thus, longer steps may result from less frequent detections 
and are also influenced by the receiver network configuration. 
Increasing the sample size (both in terms of individuals and 
time resolution, as well as enhancing the density of acoustic 
receivers) is crucial for determining the efficacy of this type of 
data in assessing chronotypes.

From the data initially received, some datasets were ex-
cluded for different reasons. Some datasets were unusable 
due to a low number of individuals tagged; some other data-
sets were excluded because day–night patterns could not be 
discerned with the available data, and in other cases, data-
sets were not considered because the HSMM did not fit (see 
Table S1). Although nearly half of the datasets were ultimately 
excluded, this does not imply that these species lack chrono-
types. Instead, our results suggest that the experimental de-
sign, specifically the receiver network density, the number 

TABLE 2    |    Results of the GLMM showing the effect of fish size.

Species Dataset

Awakening time Rest onset

Post. Mean l-CI u-CI pMCMC Post. Mean l-CI u-CI pMCMC

Anguilla anguilla AAn −8.41 −25.89 3.35 0.4 −0.76 −9.70 6.46 1

Astacus astacus AAs 2.66 −44.50 54.17 0.8 −3.75 −28.53 13.32 0.8

Cyprinus carpio CC −0.28 −0.84 0.53 0.2 0.03 −1.45 1.09 0.8

Dentex dentex DD 0.69 −3.08 5.22 0.6 −0.37 −7.02 2.82 0.8

Diplodus sargus DS_UB −10.31 −18.07 −3.95 < 0.1 −1.05 −23.36 16.29 0.6

Epinephelus 
morio

EM 1.03 −0.05 2.84 0.2 −0.92 −1.69 −0.17 < 0.1

Gadus morhua GM_IMR −0.33 −4.04 3.21 1 0.05 −1.78 2.71 1

Labrus bergylta LB −3.50 −10.41 3.63 0.4 6.25 0.00 17.71 < 0.1

Perca fluviatilis PF −1.16 −5.71 2.48 0.2 0.08 −8.20 7.31 0.6

Pollachius 
pollachius

PP 35.17 −6.30 98.83 0.4 −5.38 −47.63 58.09 0.6

Serranus cabrilla SCb −0.69 −3.24 1.22 0.6 −3.09 −10.94 3.82 0.6

Silurus glanis SG_WUR −0.12 −3.46 2.31 1 −0.98 −5.77 3.12 0.6

Sander lucioperca SL 11.49 −66.68 56.17 0.8 −71.93 −163.09 −9.36 < 0.1

Salmo trutta ST 17.36 −17.77 53.74 0.4 −13.36 −31.09 8.96 0.2

Scarus sp. Scarus 7.83 −6.88 18.86 0.4 −3.41 −5.41 −2.02 < 0.1

Xyrichtys 
novacula

XN_JSATS −7.69 −16.76 4.93 0.4 −3.03 −4.40 −0.72 < 0.1

Xyrichtys 
novacula

XN_SUR −0.63 −2.59 2.10 0.4 0.07 −0.08 0.28 0.4

Note: ‘Species’ refers to the scientific name of the species. ‘Dataset’ is the reference name of the dataset detailed in Table S1. ‘Post.Mean’ corresponds to the estimated 
posterior mean obtained in the GLMM. ‘l-CI’ is in reference to the lower 95% credible interval. ‘u-CI’ is in reference to the upper 95% credible interval. ‘pMCMC’ 
represents the Markov Chain Monte Carlo p-value. The first set of columns presents results for awakening time, and the second set for rest onset. Results are 
considered statistically significant if the 95% credible interval does not include zero and pMCMC is less than 0.1. Statistically significant results are highlighted in bold.
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of individuals tagged and the time resolution of the tags, 
was inadequate for assessing chronotypes. Additionally, we 
should consider that in some species, the nature of the track-
ing data itself may not allow these day–night differences to 
be captured, regardless of the receiver network design, tag 
configuration, or other experimental parameters. Therefore, 
our findings underscore the need for future experiments ex-
plicitly designed to address the objective of revealing chrono-
types, employing suitable experimental designs. Based on our 
results, we suggest that first, it is crucial to ensure that the 
receiver network sufficiently covers the entire home range of 
the tagged individuals to facilitate continuous tracking over 
the activity–rest cycle. Second, the temporal resolution of the 
data acquisition must be high enough to generate the data re-
quired to study chronotypes. And finally, enough individuals 
must be tagged to enable the R score calculation, providing 
robust estimates of among-individual behavioural variation. 
Based on our suitable datasets, we found evidence of chrono-
types in almost all cases, suggesting that this behaviour may 
be widespread across many species.

The acoustic telemetry types of data (detections, positions, depth 
and activity) considered in this work to identify chronotypes 
displayed diverse degrees of effectiveness. However, we did not 
perform a species-level comparison using different types of data, 
as this was beyond the main objective of the present work; such 
an approach would be essential to properly assess the potential 
of each type of data, as their utility may be species-specific or 
even study-specific. Among the methods we evaluated, acoustic 
detections and acceleration sensors were the ones that most fre-
quently yielded significant R estimates. Conversely, the distance 
between successive positions resulted in fewer significant chro-
notypes, implying that this technique may require additional 
enhancement if intended to be used to assess behaviour-related 
circadian traits (Table 1). This does not necessarily imply that 
this metric is inherently less effective, but rather that its per-
formance may be limited under certain conditions or within a 
species-specific context.

For future experiments aimed at assessing chronotypes, we 
recommend the use of acceleration sensors, as this methodol-
ogy truly reflects the individual's activity levels (Pereñíguez 
et al. 2022), as long as the fish can be continuously monitored 
over a 24-h period; in other words, it remains within the detec-
tion range. However, our results also demonstrate that acous-
tic detections can be useful to identify chronotypes, but it is 
important to note that receiver detection efficiency can vary 
across the diel cycle due to environmental factors such as tem-
perature, noise, or turbidity, which may affect the reliability of 
detection-based metrics (Payne et  al.  2010). While the use of 
control tags is recommended to standardise detection efficiency, 
this limitation is likely less critical in the context of chronotype 
analysis. Such studies, focused on inter-individual differences in 
the activity onset and offset, are less likely to be confounded by 
systematic variations in receiver performance, as these would 
typically influence all individuals similarly within a given array. 
Moreover, prior work in X. novacula using detection-based 
chronotype estimates has shown biologically meaningful re-
sults that were not attributable to diel fluctuations in detection 
efficiency (Alós et al. 2012). Nonetheless, we recognise this as 
a methodological limitation and encourage the use of control 

tags or standardisation procedures in future studies relying on 
detection-based metrics to assess circadian-related behavioural 
traits.

The R scores estimated in this study reveal clear chronotypes 
across different species. For example, in the G. morhua data-
set, awakening times ranged from 141.87 min before sunrise 
to 304.33 min after sunrise, resulting in a total difference of 
446.2 min between the earliest and latest risers. Similarly, for S. 
lucioperca, rest onset times ranged from 585.71 min before sun-
set to 5.33 min after sunset, with a total difference of 591.04 min. 
These examples, along with the results presented in the Table S2, 
indicate a continuum in awakening times, with distinct early and 
later risers, as well as a continuum in rest onset times, with indi-
viduals consistently starting rest earlier and individuals consis-
tently starting to rest later. These findings support the existence 
of both “morning” and “evening” individuals, consistent with 
classic human chronotype literature (Webb and Bonnet 1978). 
Conversely, studies on terrestrial animal chronotypes typically 
focus on the spectrum of daily activity duration, defining “short-
activity types” as individuals with later awakening times and 
earlier rest onsets, and “long-activity types” as those with ear-
lier awakening times and later rest onsets (Martorell-Barceló 
et al. 2024; Maury et al. 2020; Steinmeyer et al. 2010). In this 
study, we underscore the need for future research to investigate 
the correlations between awakening time and rest onset, accu-
rately characterise chronotypes across candidate species, and 
examine the biological causes and ecological consequences of 
among-individual variation (Martorell-Barceló et  al.  2018). To 
generate the knowledge needed to address these pressing ques-
tions, our study highlights the invaluable role of collaborative 
efforts, like those fostered by the ETN and the Lake Tracking 
Network, in enabling large-scale, multi-species research using 
biotelemetry datasets in multiple systems and across multiple 
species. Continued collaboration and data-sharing efforts will 
pave the way for broader and more comprehensive analyses in 
the field of aquatic animal behaviour (Jarić et al. 2023; Nguyen 
et al. 2017).
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