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ABSTRACT
Acoustic telemetry offers valuable opportunities to investigate individual variability in circadian-related and other behaviours and
how environmental cues shape these patterns in wild fish populations. However, this potential has not yet been fully exploited.
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We conducted a meta-analysis on 44 datasets from 34 distinct marine and freshwater species and different types of data (acous-
tic detections, depth, acceleration and positioning). Our aim was to explore the potential of acoustic telemetry in identifying
chronotypes as consistent among-individual differences in circadian-related behaviours. First, we applied hidden semi-Markov
models to classify individual time series into active and rest states. Subsequently, we computed two classical circadian-related
behavioural traits: awakening time (as the activity onset) and rest onset (as the activity offset). Subsequently, we identified dis-
tinct phenotypes by decomposing behavioural variation into within- and among-individual components based on repeatability
scores. We found evidence of distinct chronotypes in 17 species, with average repeatability scores of 0.52 for awakening time and
0.43 for rest onset, revealing that chronotypes are common in aquatic species. Our findings highlight that both the data type,
particularly acceleration sensors, and the number of detections are effective tools for exploring chronotypes. Our study proposes
a novel approach to characterising daily activity patterns in aquatic species, predominantly in fishes, and provides guidelines
for investigating chronotypes across diverse taxa. We emphasise the promise of biotelemetry and advanced statistical models for
improving our understanding of the behaviour of aquatic species and highlight the value of synthesising across large data sets

collected in networks of biotelemetryprojects.

1 | Introduction

Chronotypes are defined as among-individual differences in
circadian-related behaviours, which remain relatively stable
over time due to the regulation of the internal circadian clock
and are modulated by environmental and anthropogenic fac-
tors (Ehret 1974; Helm et al. 2017; Roenneberg et al. 2007).
The circadian-related behaviours commonly considered to
identify chronotypes are the timing of activity onset and offset
(Roenneberg et al. 2003). In humans, chronotypes have been ex-
tensively studied due to their link to sleep, well-being and health
(Navara and Nelson 2007) and are often categorised along a
morning-evening continuum. Morning types, as the name
suggests, tend to favour morning activities, typically starting
their activity and rest earlier, with their cognitive and physical
performance peaking earlier in the day. By contrast, evening
types prefer evening activities, generally starting their activity
and rest later, with their optimal cognitive and physical perfor-
mance occurring later in the day (Bauducco et al. 2020; Webb
and Bonnet 1978).

In animals, chronotypes are often characterised by consistent
among-individual differences in activity-rest patterns, ful-
filling the criteria of conventional behavioural types (Réale
et al. 2007; Sih et al. 2004). Accordingly, chronotypes can
be estimated using the repeatability (R) score, a widely used
index for identifying behavioural types (Dingemanse and
Dochtermann 2013). The R score represents the proportion
of the total variance in a behavioural metric of interest that
is explained by differences among individuals (Nakagawa
and Schielzeth 2010). Various authors have used R scores
to describe chronotypes in terrestrial animals (Chmura
et al. 2020; Dominoni et al. 2013, 2014; Graham et al. 2017;
Maury et al. 2020; Rittenhouse et al. 2019; Schlicht et al. 2014;
Schlicht and Kempenaers 2020; Steinmeyer et al. 2010;
Stuber et al. 2015). This body of evidence suggests that, as
in humans, other terrestrial animals also display consistent
among-individual differences in circadian-related behaviours.
However, chronotypes have often been overlooked in aquatic
animals (Bloch et al. 2013; Helm and Visser 2010). Numerous
studies indicate that fish exhibit chronotypes (Slavik and
Horky 2012; Zavorka et al. 2016), supported by an extensive
body of literature on circadian rhythms in fishes in laboratory

settings (Blanco-Vives and Sanchez-Vazquez 2009; Lopez-
Olmeda et al. 2006; Lucas-Sanchez et al. 2013; Reebs 2002).
Generally, there have been very few attempts to estimate the
R scores of circadian-related behaviours in the wild (but see
Alds et al. 2017 and Martorell-Barcel6 et al. 2024 for a set of
studies in Xyrichtys novacula (Labridae)).

The determination of chronotypes relies on fine-scale moni-
toring of activity-rest cycles under natural conditions in a suf-
ficiently large number of individuals to effectively disentangle
individual and population-level sources of behavioural variation
(Roenneberg et al. 2007). In humans, chronotypes are typically
measured using a combination of sleep measurements collected
through activity telemetry devices and questionnaires that show
the individual's sleep preferences (Di Milia et al. 2013). In ter-
restrial animals, various techniques have been used to measure
activity-rest patterns, including infrared beams, video analysis,
pressure plates, jiggle cages, locomotor activity cages, telemet-
ric devices and accelerometer monitors (Mann et al. 2005). In
aquatic environments, traditional techniques for monitoring the
behaviour of free-living animals have not been readily avail-
able, limiting our understanding of the particularities of chro-
notypes in aquatic organisms (Helm et al. 2017). Over the past
two decades, advances in acoustic telemetry have significantly
improved our ability to monitor free-living aquatic populations
(Hussey et al. 2015), providing novel opportunities to study chro-
notypes in large numbers of individuals (Nathan et al. 2022).

Acoustic telemetry is the most widely used tracking system
for aquatic environments and has become a powerful tool to
improve our knowledge of the behaviour, ecology and conser-
vation of fish (Lennox et al. 2023; Matley et al. 2022). This
technology is based on implanting an acoustic transmitter in
the fish, which emits codified signals with unique identifiers
(Lennox et al. 2023). These signals are typically detected by
an array of receivers strategically deployed within the study
area (Heupel et al. 2006). Acoustic telemetry has been used to
identify diel activity-rest patterns in various species in both
freshwater and marine environments. Some examples are
Perca fluviatilis (Percidae; Nakayama et al. 2018), Silurus gla-
nis (Siluridae; Brevé et al. 2014), Cyprinus carpio (Cyprinidae;
Monk et al. 2023), Serranus cabrilla (Serranidae; Alds
et al. 2011), Serranus scriba (Serranidae; March et al. 2010),
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Labrus bergylta (Labridae; Villegas-Rios et al. 2013),
Diplodus sargus (Sparidae; Aspillaga et al. 2016), Dentex
dentex (Sparidae; Aspillaga et al. 2017), Cheilinus undulatus
(Labridae; Chateau and Wantiez 2007), Pterois volitans and
Pterois miles (Scorpaenidae; McCallister et al. 2018), Naso uni-
cornis and Naso lituratus (Acanthuridae; Marshell et al. 2011),
Chlorurus sordidus, Scarus ferrugineus and Scarus fucropur-
pureus (Scaridae; Pickholtz et al. 2022). None of these studies,
however, specifically addressed the role of circadian-related
behaviours to determine the existence of chronotypes in these
species. Notably, only Alés et al. (2017) and Martorell-Barceld
et al. (2023, 2024) utilised a combination of hidden Markov
models (HMMs; Patterson et al. 2009) and acoustic detection
time-series data to effectively decompose the population- and
individual-variance components for circadian-related be-
haviours, providing robust evidence for the existence of chro-
notypes in X. novacula. To date, the full potential of acoustic
telemetry in exploring chronotypes in a set of species remains
underexplored.

Acoustic transmitters can also be complemented with sensors
that record environmental parameters such as temperature
and depth, or even measures of body acceleration as a di-
rect indicator of activity levels (Cooke et al. 2004; Donaldson
et al. 2014; Hussey et al. 2015). Acceleration sensors are partic-
ularly useful at detecting activity-rest patterns. For instance,
Carcharinus perezi (Carcharhinidae) exhibits greater activity
levels at night, associated with foraging (Shipley et al. 2018).
Depth sensors are also efficient to detect activity-rest pat-
terns. Shifts in individual vertical distribution, resulting in
daily behavioural patterns, are widespread among aquatic
organisms (Neilson and Perry 1990; Watanabe et al. 1999).
Andrews et al. (2009) used acoustic tags with depth sensors
in Hexanchus griseus (Hexanchidae) to show that individuals
inhabited deeper and colder waters during daytime and ac-
tively hunted in shallower and warmer waters. Individuals
may also exhibit daily behavioural patterns in their space
use from pelagic to littoral sites (Monk et al. 2023; Nakayama
et al. 2018). Acoustic telemetry is particularly valuable in
discerning these ‘horizontal daily’ migrations, as it not only
offers detections and sensor data but also provides positional
information and detailed daily activity-rest patterns. For ex-
ample, Watson et al. (2019) showed that some Oncorhynchus
mykiss (Salmonidae) used different areas of a lake for foraging
during the day and resting at night.

Although previous evidence suggests that using acoustic te-
lemetry along with associated sensors is a valuable approach
to assess chronotypes, this method presents three significant
challenges. First, depending on the setup of the acoustic net-
work, if the receiver density is too low, detecting the activity
onset and offset might be difficult and imprecise, making dif-
ferences among individuals undetectable. Second, depending
on the transmitters’ emission period, the temporal resolution
may not be sufficient to disentangle the activity start and end
times. Third, the number of individuals that can be tracked
simultaneously is often limited due to signal collision in some
coding systems. This occurs when multiple transmitters emit
signals simultaneously on the same frequency, causing in-
terferences that prevent their detection (Binder et al. 2016).
Recent advancements in high-resolution telemetry systems

mitigate some of these issues (Baktoft et al. 2015; Lennox
et al. 2023; Nathan et al. 2022). In particular, some of the new
tracking systems address signal collision through improved
emission protocols, such as the Binary Phase-Shift Keying
(BPSK) coding system. This approach allows transmitters to
emit short signals with a low probability of collision (< 1ms;
Aspillaga, Arlinghaus, Martorell-Barcel6, Follana-Bern4,
et al. 2021; Lennox et al. 2023). Similarly, Code Division
Multiple Access (CDMA) has been employed in some acous-
tic telemetry systems to address code-collision challenges. For
example, the Lotek MAP system, as previously assessed (see
Baktoft et al. 2015), uses CDMA to enable effective simulta-
neous tracking of multiple tagged individuals. Regarding the
measurement of chronotypes, high-resolution telemetry sys-
tems not only allow us to evaluate the chronotypes by drasti-
cally increasing the number and frequency of detections but
also allow for an increase in the number of monitored indi-
viduals, thereby enabling population-level studies necessary
to accurately attribute individual differences to behavioural
variation (Martorell-Barcelo et al. 2023, 2024).

In this study, we compiled and analysed datasets from various
acoustic telemetry studies that had purposes other than the
study of chronotypes. Our objective was to explore the potential
of acoustic telemetry for detecting circadian-related behavioural
variations and to evaluate the possibility of computing R scores
that describe chronotypes in different species. Our specific ob-
jectives were 1) to identify species-specific characteristics that
allow for effective chronotype analysis using acoustic teleme-
try data; 2) to evaluate various types of data (detections, depth,
activity, or positions) that can be used to capture circadian-
related behavioural variation, thereby improving chronotype
estimation and 3) to compare R scores for chronotypes across
several aquatic species. The results of this study enhance our
understanding of circadian-related behavioural traits in wild
aquatic populations and provide guidelines for designing future
research to address chronotypes using acoustic telemetry.

2 | Methods
2.1 | Data Collection

We sourced telemetry datasets from various researchers across
Europe and the Atlantic, including datasets retrieved through
the European Tracking Network (ETN, https://www.europeantr
ackingnetwork.org/en; Abecasis et al. 2018) and other telemetry
networks (e.g., the Lake Telemetry Network; Jari¢ et al. 2023).
These networks aim to reinforce the collaboration among re-
searchers and offer a more holistic understanding of animal
movement patterns across varying spatial scales and species. We
collected a total of 44 datasets covering 34 distinct aquatic spe-
cies, including marine and freshwater species, spanning a range
of habitat types (see Table S1). For datasets obtained directly
from the ETN, we used the etn package (Huybrechts et al. 2025)
developed for R software (R Core Team 2022). All datasets were
based on acoustic telemetry data. When available, data from
built-in sensors (depth and activity) or positioning from high-
resolution telemetry systems were also included. These datasets
also contained information about the body size of the tracked
individuals.
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For statistical reasons, a minimum number of tracked animals
isrequired to determine whether a species exhibits chronotypes.
Consequently, datasets with fewer than seven individuals were
excluded from further analyses. Although there is no strict rule
on the minimum number of individuals required, our previ-
ous experience suggests that seven individuals is a reasonable
threshold to obtain robust results. In one case, two datasets be-
longing to the same genus (S. ferrugineus and S. fuscopurpureus)
were combined to form a unique dataset (Scarus) to achieve the
minimal sample size (see Table S1), assuming that both species
present similar behaviour (Pickholtz et al. 2022). The remaining
datasets were visually inspected to identify the individuals with
clearly defined activity-rest patterns (as shown in Figure 1B-F;
Table 1). For this purpose, we examined the general activity
patterns of each individual on a 3-h basis: number of detections
(Figure 1A,B), activity (Figure 1C,D) and depth (Figure 1E,F).
We excluded six datasets when a clear day-night pattern could
not be identified (e.g., Figure 1A; see Table S1). The absence
of a clear pattern in these datasets was primarily caused by a
lack of data as a consequence of the experimental design, which
was not conducive to collecting data for effectively estimating
activity-rest patterns. This exclusion does not suggest the ab-
sence of chronotypes in these species but rather indicates that
the data collection methodology used was not suitable for our
specific objectives.

Each selected dataset was processed using specific time steps,
chosen independently for each case based on the species’ be-
haviour and the nature of the data: number of detections, mean
step lengths between consecutive positions, depth, or activity.
To select the most suitable time step for each dataset, we created
temporal sequences with 5, 10 and 15-min intervals. For each
specific case, we then chose the shortest time step that most ac-
curately captured individual variation and represented the day/
night cycle. We acknowledge that diel variation in receiver de-
tection efficiency may affect detection-based metrics; however,
our analysis focuses on inter-individual differences in timing,
which are less likely to be confounded by this effect. This ap-
proach allowed us to adapt to the biological and methodological
characteristics of each dataset (e.g., species mobility, tag type or
density of receiver network), ensuring that the time resolution
was appropriate. The selected time step for each dataset is de-
tailed in Table 1.

2.2 | Fitting Hidden Semi-Markov Models

For the computation of the circadian-related behavioural traits,
following Alos et al. (2017), we randomly selected data from
15 consecutive days for each individual and decomposed the
individual time series into a temporal sequence of behavioural
states (active vs. resting) using a hidden semi-Markov model
(HSMM) approach (Guédon 2003). The HSMM was fine-tuned
to the characteristics of each dataset by adjusting the initial dis-
tribution and accounting for the diurnal or nocturnal activity
patterns of the species. The duration of a state in a conventional
HMM follows a geometric distribution, which leads to an expo-
nential decrease in the likelihood of remaining in the same state
over time. An HSMM accommodates a wider array of state dura-
tion distributions, thereby specifically modelling the time spent
in each state, which is particularly interesting for decomposing

diel behaviours (Guédon 2003). Furthermore, state transitions
in an HSMM take place after a variable number of time steps, as
dictated by the state duration distribution. HSMMs offer a bet-
ter fit for certain types of data due to their additional flexibility
in modelling state durations, despite requiring more computa-
tional resources for training and analysis compared to conven-
tional HMMs. Through this approach, we could customise the
model to incorporate specific parameters for species and indi-
viduals. We applied the HSMM with the function hsmmfit from
the package mhsmm (O'Connell and Hejsgaard 2011) for the R
software (R Core Team 2022). The final output for each indi-
vidual time series was a temporal sequence of two behavioural
states (active vs. rest), which was used to compute the awaken-
ing time and rest onset.

2.3 | Computation of the Circadian-Related
Behavioural Traits

Based on the results of the HSMM, we assumed that a higher
number of detections, higher activity, deeper depths and lon-
ger distances between positions indicated periods of activity.
This assumption was needed for the computation of circadian-
related behavioural traits, although their implications are ad-
dressed in subsequent sections. We categorised our datasets as
diurnal if all individuals exhibited maximum activity during
the day, as nocturnal if their peak activity was during the night,
and as dual if containing both diurnal and nocturnal individ-
uals. We recognise that this assumption might not perfectly
capture reality, but such two-state categorisation is necessary
for the computation of the circadian-related behavioural traits
and is independent of the R scores estimation for chronotypes.
We used the local sunrise and sunset data, considering their
daily variations, for each acoustic tracking experiment to cal-
culate two circadian-related behavioural traits: awakening
time as the activity onset (min) and rest onset as the activity
offset (min). For diurnal individuals, we defined the awaken-
ing time relative to sunrise and rest onset relative to sunset.
Conversely, for nocturnal individuals, we defined the awak-
ening time relative to sunset and rest onset relative to sun-
rise. Days in which the awakening time occurred after half of
the daytime or rest onset past the midpoint of the nighttime
were excluded from the subsequent analyses. For the diurnal
individuals, we removed days with less than half the daytime
of activity (activity < (sunrise—sunset) / 2). Similarly, for the
nocturnal individuals, we removed days with less than half
the nighttime of activity (activity < (sunset—sunrise (n+ 1))
/ 2). At this stage, we excluded additional datasets in subse-
quent analyses due to the low number of individuals meeting
the specified conditions. Finally, we considered 17 datasets
from 16 freshwater and marine species in the final analyses.

2.4 | Raw Repeatability

We calculated the raw R as an initial approach to investigate
how consistent among-individual differences are in awaken-
ing time and rest onset. Raw R refers to the proportion of total
variance in the trait that is attributed to differences among
individuals, without accounting for potential confounding
factors or covariates (Nakagawa and Schielzeth 2010). For a

Fish and Fisheries, 2025

1137

85UBJ1 SUOWIWIOD BAIER1D el jdde aup Aq pausenoh e sap1e YO ‘88N Jo S3|n Joj Areiq)T 8UIIUO AB]IM UO (SUORIPUOD-PUB-SWLIRYLOD" AB] 1M AReiq 1 puljUO//SANY) SUORIPUOD PUe SWB L 83 885 *[G20Z/0T/¥T] uo Ariqiauliuo ABJIm * 2160 [03Qessenes jend Imisu| zuge-] - smeybuiny 1eqoy Ad 200L e/ TTTT OT/I0p/wod A|imAzeiq1ieuljuo//Sdiy woiy pepeoiumod ‘9 ‘SZ0¢ ‘6262.9vT



s A Diplodus vulgaris B Epinephelus morio

= Fish ID = DV002 Fish ID = EM006

g 50

S 204 J

$ 151 .

g 10 b

@ 1 10 k

8 o4 | ‘Ah 1 A 0-

< 08/10 10/10 12/10 14/10 16/10 18/10 20/10 22/10 15/04 17/04 19/04 21/04 23/04 25/04 27/04 29/04

Cc Scarus sp. D Sander lucioperca

5 Fish ID = Ssp007 Fish ID = SL0O08

£ 2.0

» B

E 2 1.51

> 1 1.0

Z 1

2 0.5

< 0 T T T T T T T T 00- T T T T T T T T
28/05 30/05 01/06 03/06 05/06 07/06 09/06 11/06 01/09 03/09 05/09 07/09 09/09 11/09 13/09 15/09

E Gadus morhua F Labrus bergylta

- Fish ID = GM017 Fish ID = LB015

™

}E\ 154

é 10.

S

g 51

[a)

04 04

05/07 07/07 09/07 11/07 13/07 15/07 17/07 19/07 29/10 31/10 02/11 04/11 06/11 08/11 10/11 12/11

Date

FIGURE1 | Temporal sequence for the identification of activity-rest patterns. Examples of 3-h temporal sequences illustrating datasets with and
without clear day/night patterns. The number of detections, activity and depth are shown in blue. Night-time periods are shaded in grey. The first
row presents examples of acoustic detection (number of detections in 3h): (A) Sequence without a clear day/night pattern from Diplodus vuigaris. (B)
Sequence with a clear day/night pattern from the Epinephelus morio. The second row shows activity data (average m/s in 3h): (C) Sequence with a
clear day/night pattern from the Scarus dataset. (D) Sequence with a clear day/night pattern from Sander lucioperca. The third row displays depth
data (average depth (m) in 3h): (E) Sequence with a clear day/night pattern from Gadus morhua (GM_IMR dataset). (F) Sequence with a clear day/
night pattern from Labrus bergylta.

specific trait, the raw R score was calculated as the between- (Table 1; Figure 2). Remarkably, 82% of datasets for awakening
individual variance V, ,, divided by the sum of V, ,, and time and 94% for rest onset showed statistically significant R
the within-individual variance (or residual variance, V). scores, ranging from 0.22 to 0.81 for awakening time and from
To properly decompose the raw phenotypic variance into 0.09 to 0.86 for rest onset. Statistically significant R scores were
between- and within-individual variances, we fitted a gen- obtained for 14 datasets regarding awakening time and for 16

eralised linear mixed model (GLMM) to each dataset and datasets regarding rest onset. The mean (+ standard deviation)
circadian-related behavioural trait, using the MCMCglmm of these significant R scores was 0.52+0.20 for awakening time
library (Hadfield 2010) built for the R software following and 0.43 +£0.23 for rest onset, suggesting the presence of chro-
Dingemanse and Dochtermann (2013). We fitted one GLMM notypes across these datasets (Figure 2). The species with the
to each dataset, including awakening time or rest onset as a highest R score, 0.81 [0.55-0.86], for awakening time was Salmo
response variable, the size of the individual as a fixed effect trutta (Salmonidae). The individual with the earliest awakening
and the identifier (ID) of the individual as a random effect. time (STO02) started its activity, on average, 343.75min before
We included the size as the unique common variable between sunrise, while the individual with the latest awakening time
datasets because we needed a fixed factor in order to run it. To (ST03) started its activity, on average, 348 min after sunrise. The
assess the statistical significance of the R score, we combined difference between these individuals in awakening time was
the confidence intervals with the difference in the Deviance 691.75min (see Table S2). The species with the highest R score,
Information Criterion (DIC) between the complete GLMM 0.86 [0.71-0.95], for rest onset was C. carpio. The individual
and the constrained model (i.e., the model without the random with the earliest rest onset (CCO1) started its rest, on average,

effect, DIC ). If this difference exceeded two and the confi- 207.67 min after sunset, while the individual with the latest rest
dence interval did not include zero, the R score was considered onset (CCO03) started its rest, on average, 544 min after sunset.
statistically significant (Alds et al. 2017; Harrison et al. 2015). This represents a difference of 336.33min between them (see
The significance of body size (in cm) was indicated by the Table S2). Additionally, the species that exhibited the highest
Markov Chain Monte Carlo p-value (pMCMC). combined R score for both circadian-related behavioural traits

was Epinephelus morio (Epinephelidae), 0.80 [0.72-0.87] for

awakening time and 0.81 [0.76-0.87] for rest onset.
3 | Results

In the GLMM, we included body size as a fixed effect, as the
We computed R scores for the awakening time and rest onset unique common variable between datasets (Table 2). For most
in 17 datasets for 16 different marine and freshwater species datasets, the effect of body size on awakening time was not
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TABLE1 | Data used for the calculation of the R scores.
DIC DIC
Awakening dif dif Activity

Species Dataset Data Interval N time Rest onset AT RO pattern Size
Anguilla AAn Det 10 10 0.29 0.19 [0.12-0.38] 32 18 Nocturnal  73.1
anguilla [0.25-0.56]
Astacus AAs Det 5 7 0.00 0.01 [0.00-0.47] 5 3 Nocturnal 52
astacus [0.00-0.42]
Cyprinus CcC Pos 10 7 0.28 0.86 [0.71-0.95] 21 169 Diurnal 28.2
carpio [0.11-0.59]
Dentex DD Depth 5 15 0.27 0.21 [0.15-0.37] 43 59 Diurnal 56.8
dentex [0.17-0.34]
Diplodus DS_UB Depth 5 12 0.35 0.59 [0.36-0.68] 54 82 Dual 25.7
sargus [0.25-0.53]
Epinephelus EM Det 10 15 0.80 0.81[0.76-0.87] 256 310 Dual 54.4
morio [0.72-0.87]
Gadus GM_IMR Depth 5 35 0.56 0.41 [0.27-0.46] 351 166 Diurnal 42.8
morhua [0.47-0.65]
Labrus LB Depth 5 15 0.47 0.34[0.26-0.41] 121 52 Dual 35.8
bergylta [0.39-0.72]
Perca PF Pos 5 7 0.00 0.58 [0.46-0.90] 8 91 Diurnal 36.3
Sfluviatilis [0.00-0.34]
Pollachius PP Depth 5 9 0.39 0.28 [0.19-0.40] 52 37 Dual 37.7
pollachius [0.26-0.52]
Serranus SCb Det 15 8 0.00 0.46 [0.41-0.69] 4 46 Diurnal 15.1
cabrilla [0.00-0.28]
Silurus SG_WUR Depth 5 13 0.44 0.18 [0.11-0.32] 60 30 Dual 86.4
glanis [0.25-0.56]
Sander SL Act 5 11 0.40 0.66 [0.47-0.86] 52 127 Dual 43.8
lucioperca [0.19-0.56]
Salmo trutta ST Depth 5 13 0.81 0.23[0.09-0.56] 44 16 Dual 36

[0.55-0.86]
Scarus sp. Scarus Act 5 7 0.78 0.12 [0.06-0.31] 229 26 Diurnal 38.8

[0.61-0.87]
Xyrichtys XN_JSATS Det 5 30 0.77 0.38 [0.24-0.44] 658 111 Diurnal 16.8
novacula [0.73-0.86]
Xyrichtys XN_SUR Det 5 14 0.61 0.65 [0.42-0.80] 115 109 Diurnal 18.4
novacula [0.47-0.70]

Note: ‘Species’ refers to the scientific name of the species. ‘Dataset’ is the reference name of the dataset detailed in Table S1. ‘Data’ refers to the type of dataset
(Det=detections, Pos =positions, Depth =depth and Act=activity). ‘Interval’ refers to the time step used to create the temporal sequences. ‘N' is the number of
individuals included. ‘Awakening time’ and ‘Rest onset’ indicate the respective R score, with 95% confidence intervals in brackets. ‘Dic dif AT’ and ‘DIC dif RO’
represent the difference between DIC and DIC for awakening time and rest onset, respectively. ‘Activity pattern’ classifies the species as diurnal, nocturnal, or dual.

Lastly, ‘Size’ indicates the mean total length (cm) of the individuals for each dataset.

statistically significant, as indicated by wide 95% credible in-
tervals (CI) that included zero and pMCMC values greater than
0.1 (Table 2). However, D. sargus (DS_UB dataset) showed a
statistically significant negative effect of size on awakening
time (Table 2), suggesting that larger individuals started their
activity earlier than smaller individuals. Regarding rest onset,
negative statistically significant effects were observed for E.

morio, Sander lucioperca (Percidae), Scarus sp. and X. novac-
ula (XN_JSATS dataset) (Table 2). This suggests that larger
individuals of these species started their resting phase ear-
lier than smaller individuals. By contrast, L. bergylta showed
a positive statistically significant effect (Table 2), suggest-
ing that larger individuals started their rest later than the
smaller ones.

Fish and Fisheries, 2025

1139

85UBJ1 SUOWIWIOD BAIER1D el jdde aup Aq pausenoh e sap1e YO ‘88N Jo S3|n Joj Areiq)T 8UIIUO AB]IM UO (SUORIPUOD-PUB-SWLIRYLOD" AB] 1M AReiq 1 puljUO//SANY) SUORIPUOD PUe SWB L 83 885 *[G20Z/0T/¥T] uo Ariqiauliuo ABJIm * 2160 [03Qessenes jend Imisu| zuge-] - smeybuiny 1eqoy Ad 200L e/ TTTT OT/I0p/wod A|imAzeiq1ieuljuo//Sdiy woiy pepeoiumod ‘9 ‘SZ0¢ ‘6262.9vT



Awakening time Rest onset
Anguilla anguilla (AAN) 4 -— ——
Astacus astacus (AAs)q A - - - - - - - - - Ao -
Cyprinus carpio (CC)- o — o—
Dentex dentex (DD) - —— ——
Diplodus sargus (DS_UB) —— —
Epinephelus morio (EM) 4 —e— ——
Gadus morhua (GM_IMR) 4 —— — e
.g Labrus bergylta (LB) - ————— —e—
3 Perca fluviatilis (PF)d{ A - - - — - - - ———
(,Q)' Pollachius pollachius (PP) - —— ——
Serranus cabrilla (SCb)q A - - - - - - N P
Silurus glanis (SG_WUR)+ —o—— o —
Sander lucioperca (SL)H —_—— —
Salmo trutta (ST) A — e Py
Scarus sp. (Scarus) - —_—— ————
Xyrichtys novacula (XN_JSATS) -0— —0—
Xyrichtys novacula (XN_SUR) —t—e—

T T T T

0.0 0.2 0.4 0.6

T T T T

08 10 00 02 04 06 08 10
Raw repeatability score

FIGURE 2 | Raw repeatability scores. The R scores are presented for each dataset separated by awakening time and rest onset, representing the

mean (dot) and confidence intervals (CI, 2.50 and 97.50). Dots and lines indicate the statistical significance of the values: solid and dotted for statis-

tically significant and dashed lines and triangles for non-statistically significant results. Violet vertical lines indicate the average R scores for signif-

icant values, 0.52 for awakening time and 0.43 for rest onset.

Overall, our analysis showed that chronotypes were present in
most suitable datasets. We thus conclude that chronotypes may
be a common behaviour in aquatic species in both marine and
freshwater systems.

4 | Discussion

Our study provides the first comprehensive assessment of the
contribution of individual variability in circadian-related be-
havioural traits (defining chronotypes) across a diverse range
of wild marine and freshwater species, utilising acoustic te-
lemetry data for their identification. We highlight several
key findings concerning the raw R scores for awakening time
and rest onset. We managed to calculate raw R scores for 17
datasets across 16 different species. Our findings suggest a
potential existence of chronotypes across almost all species
studied when their estimation was possible. Our findings sug-
gest that, in addition to the already described chronotypes in
X. novacula (Alds et al. 2017; Martorell-Barceld et al. 2024),
species such as Anguilla anguilla (Anguillidae), C. carpio, D.
dentex, D. sargus, E. morio, Gadus morhua (Gadidae), L. ber-
gylta, Pollachius pollachius (Gadidae), S. glanis, S. lucioperca,
S. fuscopurpureus, S. ferrugineus and S. trutta also exhibited
consistent among-individual differences in both awakening
time and rest onset, indicating the presence of chronotypes
in these species. Furthermore, P. fluviatilis and S. cabrilla
showed significant repeatability for rest onset, indicating
potential chronotypes, although this should be confirmed
through additional studies. These results also show the power
of acoustic telemetry as a tool to study the presence and, in
turn, ecological consequences of chronotypes. Overall, this
study represents the first attempt to investigate chronotypes
across different freshwater and marine species.

We determined the variation in circadian-related behavioural
traits derived from HSMM fitted to a time series of acoustic
telemetry data. From the data obtained via acoustic detections
and depth sensors, we were unable to directly assign with
certainty a high number of detections to a specific activity
state (diurnal vs. nocturnal). However, making this assump-
tion (a higher number of detections, deeper depths and lon-
ger distances between positions indicated periods of activity)
is essential to enable the computation of the HSMMs, which
are used to derive the awakening time and rest onset. It is im-
portant to acknowledge that this assumption may represent
a potential limitation in our methodology, which future re-
search could aim to address more directly, including whether
species are diurnal or nocturnal based on their hunter or feed-
ing behaviour instead of the number of detections. In specific
cases, such as X. novacula due to its burying behaviour during
nighttime, we are very certain that a higher number of detec-
tions reflected an increase in their activity (Alds et al. 2012).
Furthermore, the small home range of this species ensures
the continuous tracking of them (Aspillaga, Arlinghaus,
Martorell-Barceld, Barcelo-Serra, and Alds 2021). However, in
many other species, this diel pattern was less pronounced and
remained more ambiguous. For example, in species like Solea
senegalensis (Soleidae), it has been shown that a higher num-
ber of detections is associated with rest (Gandra et al. 2018).
This may be due to the design of the receiver network, where
fish are detected less frequently during periods of activity
compared to when they are at rest and move less within the
detection range of a receiver. A similar pattern is observed
with depth sensor data. For instance, G. morhua is known to
hunt actively in shallow habitats with limited receiver cover-
age (Olsen et al. 2012). In these species, lower detection counts
or shallower depths tend to reflect periods of greater activity.
Therefore, when interpreting detection and depth data within
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TABLE 2 | Results of the GLMM showing the effect of fish size.
Awakening time Rest onset

Species Dataset Post. Mean 1-CI u-CI pMCMC Post. Mean 1-CI u-CI pMCMC
Anguilla anguilla AAn —8.41 —25.89 3.35 0.4 —-0.76 -9.70 6.46 1
Astacus astacus AAs 2.66 —44.50 54.17 0.8 -3.75 —28.53 13.32 0.8
Cyprinus carpio CC —0.28 —0.84 0.53 0.2 0.03 —1.45 1.09 0.8
Dentex dentex DD 0.69 -3.08 5.22 0.6 -0.37 -7.02 2.82 0.8
Diplodus sargus DS_UB -10.31 —18.07 -3.95 <0.1 —-1.05 —23.36 16.29 0.6
Epinephelus EM 1.03 —-0.05 2.84 0.2 —0.92 —1.69 -0.17 <0.1
morio
Gadus morhua GM_IMR —-0.33 —4.04 3.21 1 0.05 -1.78 2.71 1
Labrus bergylta LB -3.50 -10.41 3.63 0.4 6.25 0.00 17.71 <0.1
Perca fluviatilis PF -1.16 =5.71 2.48 0.2 0.08 —8.20 7.31 0.6
Pollachius PP 35.17 —-6.30  98.83 0.4 —5.38 —47.63 58.09 0.6
pollachius
Serranus cabrilla SCb —-0.69 -3.24 1.22 0.6 -3.09 —-10.94 3.82 0.6
Silurus glanis SG_WUR -0.12 —3.46 2.31 1 —0.98 —5.77 3.12 0.6
Sander lucioperca SL 11.49 —-66.68  56.17 0.8 —71.93 -163.09 —9.36 <0.1
Salmo trutta ST 17.36 -17.77  53.74 0.4 —-13.36 —31.09 8.96 0.2
Scarus sp. Scarus 7.83 —6.88 18.86 0.4 -3.41 -5.41 -2.02 <0.1
Xyrichtys XN_JSATS —-7.69 —-16.76 493 0.4 -3.03 —4.40 —0.72 <0.1
novacula
Xyrichtys XN_SUR -0.63 -2.59 2.10 0.4 0.07 —-0.08 0.28 0.4
novacula

Note: ‘Species’ refers to the scientific name of the species. ‘Dataset’ is the reference name of the dataset detailed in Table S1. ‘Post.Mean’ corresponds to the estimated
posterior mean obtained in the GLMM. ‘I-CI’ is in reference to the lower 95% credible interval. ‘u-CI’ is in reference to the upper 95% credible interval. ‘pMCMC’
represents the Markov Chain Monte Carlo p-value. The first set of columns presents results for awakening time, and the second set for rest onset. Results are
considered statistically significant if the 95% credible interval does not include zero and pMCMC is less than 0.1. Statistically significant results are highlighted in bold.

acoustic arrays to study chronotypes, it is important to care-
fully consider the species’ biology in relation to the strengths
and limitations of the receiver network.

On the other hand, acceleration sensors are designed to detect
variations in fish activity (Brown et al. 2013). We investigated
two datasets with this type of data, and our results showed
that these species exhibited statistically significant R scores.
S. lucioperca had an R score of 0.33 and 0.64, and Scarus sp.
0.74 and 0.15 for awakening time and rest onset, respectively,
demonstrating that the activity sensors are very useful to de-
tect chronotypes when individuals are continuously detected
and tracked. For acoustic positioning, we computed step
lengths (distances between successive positions) as an alter-
native activity metric. We assumed that greater distances be-
tween positions indicated high activity levels, whereas shorter
distances reflected resting periods. This method was applied
in two datasets, where C. carpio showed statistically signif-
icant R scores for both traits, and P. fluviatilis showed a sta-
tistically significant R score for rest onset (see Table 1). By
contrast, in Esox lucius (Esocidae; EL_IGB dataset) and Tinca
tinca (Tincidae; TT_IGB dataset) using the same type of data,

R scores could not be computed due to a limited number of in-
dividuals with suitable data. Most likely reasons are long gaps
in data when the individuals hide in structures and are not
detectable on acoustic arrays. It is important to note that step
length measurements are highly dependent on the time inter-
val; thus, longer steps may result from less frequent detections
and are also influenced by the receiver network configuration.
Increasing the sample size (both in terms of individuals and
time resolution, as well as enhancing the density of acoustic
receivers) is crucial for determining the efficacy of this type of
data in assessing chronotypes.

From the data initially received, some datasets were ex-
cluded for different reasons. Some datasets were unusable
due to a low number of individuals tagged; some other data-
sets were excluded because day-night patterns could not be
discerned with the available data, and in other cases, data-
sets were not considered because the HSMM did not fit (see
Table S1). Although nearly half of the datasets were ultimately
excluded, this does not imply that these species lack chrono-
types. Instead, our results suggest that the experimental de-
sign, specifically the receiver network density, the number
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of individuals tagged and the time resolution of the tags,
was inadequate for assessing chronotypes. Additionally, we
should consider that in some species, the nature of the track-
ing data itself may not allow these day-night differences to
be captured, regardless of the receiver network design, tag
configuration, or other experimental parameters. Therefore,
our findings underscore the need for future experiments ex-
plicitly designed to address the objective of revealing chrono-
types, employing suitable experimental designs. Based on our
results, we suggest that first, it is crucial to ensure that the
receiver network sufficiently covers the entire home range of
the tagged individuals to facilitate continuous tracking over
the activity-rest cycle. Second, the temporal resolution of the
data acquisition must be high enough to generate the data re-
quired to study chronotypes. And finally, enough individuals
must be tagged to enable the R score calculation, providing
robust estimates of among-individual behavioural variation.
Based on our suitable datasets, we found evidence of chrono-
types in almost all cases, suggesting that this behaviour may
be widespread across many species.

The acoustic telemetry types of data (detections, positions, depth
and activity) considered in this work to identify chronotypes
displayed diverse degrees of effectiveness. However, we did not
perform a species-level comparison using different types of data,
as this was beyond the main objective of the present work; such
an approach would be essential to properly assess the potential
of each type of data, as their utility may be species-specific or
even study-specific. Among the methods we evaluated, acoustic
detections and acceleration sensors were the ones that most fre-
quently yielded significant R estimates. Conversely, the distance
between successive positions resulted in fewer significant chro-
notypes, implying that this technique may require additional
enhancement if intended to be used to assess behaviour-related
circadian traits (Table 1). This does not necessarily imply that
this metric is inherently less effective, but rather that its per-
formance may be limited under certain conditions or within a
species-specific context.

For future experiments aimed at assessing chronotypes, we
recommend the use of acceleration sensors, as this methodol-
ogy truly reflects the individual's activity levels (Perefiiguez
et al. 2022), as long as the fish can be continuously monitored
over a 24-h period; in other words, it remains within the detec-
tion range. However, our results also demonstrate that acous-
tic detections can be useful to identify chronotypes, but it is
important to note that receiver detection efficiency can vary
across the diel cycle due to environmental factors such as tem-
perature, noise, or turbidity, which may affect the reliability of
detection-based metrics (Payne et al. 2010). While the use of
control tags is recommended to standardise detection efficiency,
this limitation is likely less critical in the context of chronotype
analysis. Such studies, focused on inter-individual differences in
the activity onset and offset, are less likely to be confounded by
systematic variations in receiver performance, as these would
typically influence all individuals similarly within a given array.
Moreover, prior work in X. novacula using detection-based
chronotype estimates has shown biologically meaningful re-
sults that were not attributable to diel fluctuations in detection
efficiency (Alds et al. 2012). Nonetheless, we recognise this as
a methodological limitation and encourage the use of control

tags or standardisation procedures in future studies relying on
detection-based metrics to assess circadian-related behavioural
traits.

The R scores estimated in this study reveal clear chronotypes
across different species. For example, in the G. morhua data-
set, awakening times ranged from 141.87min before sunrise
to 304.33min after sunrise, resulting in a total difference of
446.2min between the earliest and latest risers. Similarly, for S.
lucioperca, rest onset times ranged from 585.71 min before sun-
set to 5.33 min after sunset, with a total difference of 591.04 min.
These examples, along with the results presented in the Table S2,
indicate a continuum in awakening times, with distinct early and
later risers, as well as a continuum in rest onset times, with indi-
viduals consistently starting rest earlier and individuals consis-
tently starting to rest later. These findings support the existence
of both “morning” and “evening” individuals, consistent with
classic human chronotype literature (Webb and Bonnet 1978).
Conversely, studies on terrestrial animal chronotypes typically
focus on the spectrum of daily activity duration, defining “short-
activity types” as individuals with later awakening times and
earlier rest onsets, and “long-activity types” as those with ear-
lier awakening times and later rest onsets (Martorell-Barceld
et al. 2024; Maury et al. 2020; Steinmeyer et al. 2010). In this
study, we underscore the need for future research to investigate
the correlations between awakening time and rest onset, accu-
rately characterise chronotypes across candidate species, and
examine the biological causes and ecological consequences of
among-individual variation (Martorell-Barcel6 et al. 2018). To
generate the knowledge needed to address these pressing ques-
tions, our study highlights the invaluable role of collaborative
efforts, like those fostered by the ETN and the Lake Tracking
Network, in enabling large-scale, multi-species research using
biotelemetry datasets in multiple systems and across multiple
species. Continued collaboration and data-sharing efforts will
pave the way for broader and more comprehensive analyses in
the field of aquatic animal behaviour (Jari¢ et al. 2023; Nguyen
et al. 2017).
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