Die Bedeutung großer Tiere im Fischereimanagement

Dr. Thomas Meinelt* und Prof. Dr. Robert Arlinghaus**

Bei stark befischten Kabeljaubeständen im Nordatlantik stellte man eine zunehmend frühere Laichreife und eine zunehmend kleinere Körpergröße beim Eintritt in die Geschlechtsreife und, damit verbunden, zunehmende Kleinküchigkeit fest. In verschiedenen Regionen, wie z. B. am Golf von St. Lawrence (Sinclair et al., 2002), am Golf von Maine und an der Georges Bank (Barot et al., 2004) wurden die überfischten Kabeljau-Populationen unter Schutz gestellt. Nach zehnjähriger Untersuchung stellte man fest, ob die Bestände sich wieder erholt hatten. Was man jedoch fand, waren die gleichen Effekte wie früher Erreichen der Laichreife. Was war geschehen?

Um diese Frage beantworten zu können, müssen wir uns zuerst mit einigen alten Dogmen der Fischereiwissenschaft auseinandersetzen und betrachten, was geschieht, wenn aus einer Population Fische entnommen werden. Im Allgemeinen wird behauptet, dass die phänotypische Plastizität der Fische (Begriff neuen) sehr hoch sei und die Fische nach der Reduzierung der Biomasse durch die Fischerei deshalb sofort die verfügbar gewordenen Nahrungsreserven nutzen und die Bestände wieder auffüllen. Die phänotypische Plastizität ist Ausdruck jahrhundertlanger natürlicher Selektionsprozesse, welche die natürliche „Fitness“ der Fischarmierungen steigern. Eine natürliche Selektion sortiert die Tiere aus der Fischarmierung aus, die schwächer und weniger leistungsfähig im Sinne von Überleben und Reproduktion sind, was zu einer Stimulation des Populationswachstums und somit zu einer Stimulierung der Produktion führen kann. Allerdings sollen diese Prozesse bei der derzeitigen Fischereiaus-übke keine Rolle spielen, weil natürliche Selektion, Fitness und allgemeine Evolution sehr langsame Prozesse sind, die länger dauern als die Lebenszeit von mehreren Fischergenerationen. Grundsätzlich wird aber die „Fitness“ der Populationen durch die natürliche Selektion in der Tat nachfolgend gesteigert.

Die Realität bei der Ausübung der Fischerei ist jedoch, dass die Fischerei dazu zählen würde, dass die Angelfischerei, eine Art Sortierprozess darstellt (Conover et al., 2005). Die Fischerei entnimmt gezielt die großen Fische und versucht, zumindest die kleinen Fische, z. B. über Mindestmaße und -maschenweiten, zu schützen. Die häufige Regel in der fischereilichen Praxis ist deshalb eine Größen-selektive Entnahme von Top-Prädatoren (Raubfischen) durch die Fischerei mit Ausbeutungs- raten von bis zu 80 %. Die Fähigkeit speziell der Raubfische steigt u. a. mit der Körperlänge. In Abbildung 1 ist das am Beispiel von Saiblingen dargestellt (natürlich beeinflussten auch Geschlecht, Verhalten und Stoffwechselrate die Fähigkeit mit).

Neben der Fähigkeit stellt die Enthaltungsrate ein entscheidendes Kriterium für die Ausbeutung von Fischpopulationen dar. Allein in Deutschland werden 75 % der gefangenen Fische aus den Gewässern entnommen (Abbildung 2; Arlinghaus, 2004). Das heißt, dass auch große Fische nicht nur gelangen, sondern endgültig entnommen werden. Dies wiederum bedeutet, dass der Fischereidruck auch durch die Angelfischerei auf die großen Fische (speziell Raubfische) extreem groß ist. Ist dies denn überhaupt von Bedeutung?

*Leibniz-Institut für Gewässerökologie und Binnenfischerei, Abt. Binnenfischerei, Müggelseedamm 310, 12587 Berlin
**Leibniz-Institut für Gewässerökologie und Binnenfischerei, Abteilung Binnenfischerei, Müggelseedamm 310, 12587 Berlin und Humboldt-Universität zu Berlin, Landwirtschaftlich-Gärtnereische Fakultät, Institut für Nutztiereiwissenschaften, Juniorprofessor für Binnenfischerei-Management, Invalidenstrasse 42, 10115 Berlin, E-Mail: arlinghaus@igb-berlin.de

1) Die phänotypische Plastizität wird als das Vermögen eines Genotyps definiert, auf bestimmte Umweltbedingungen hin unterschiedliche Phänotypen auszubilden (Pigliucci, 2001). Beim Phänotyp (Erscheinungstyp) handelt es sich um die Gesamtheit aller Merkmale, die das äußere Erscheinungsbild eines Individuums zu einem bestimmten Zeitpunkt seiner Entwicklung prägen. Diese werden sowohl durch die Gesamtheit der Gene (Genotyp) als auch durch Umweltinflüsse hervorgerufen, die auf das Individuum einwirken.

2) Die Fitness eines Organismus ist seine Veranlagung, in einer spezifischen Umwelt und Population zu überleben und sich zu reproduzieren. Häufig wird der Begriff auch für die Veranlagung von ganzen Populationen verwendet, unter spezifischen Bedingungen (z. B. hoher Befischungsdruck) zu überleben und zu wachsen.
Die bislang gültigen Lehrmeinungen besagen, dass:
1. den durch die Entnahme von Fischen reduzierten Populationen nun größere Pro-Kopf-Ressourcen zur Verfügung stehen;
2. die nun größeren Ressourcen das Überleben und die Fruchtbarkeit (Fitness) in den Populationen steigern;
3. jüngere Fische ertragsmäßig produktiver als alte Fische sind;
4. jüngere Fische bessere Laichtrier als alte Fische sind;
5. Fische eine hohe Anpassungsfähigkeit an Umweltbedingungen (phänotypische Plastizität) besitzen, die u. a. durch die natürliche Selektion bewirkt wurde;
6. dass eigentlich nur Umweltbedingungen wie z. B. Temperatur, Nahrung und Sauerstoff etc. für Ertrag und Reproduktion maßgebend sind;
7. die Bestandsbiomasse, nicht aber die Altersstruktur des Laichtierbestandes für die Reproduktionsleistung von Beständen von Bedeutung sind.

Abb. 1: Fängigkeit (Vulnerability) von Saiblingen in Abhängigkeit von der Körperlänge (Fork Length) (Paul et al., 2003)

Abb. 2: Mittlere Entnahme von Fischen in Deutschland, SF bezeichnet den Standardfehler (Arlinghaus, 2004)
Wir werden diese Lehrmeinungen im Folgenden einer kritischen Prüfung unterziehen und feststellen, dass insbesondere die selektive Entnahme der großen Fische den Rahmen unserer allbekannten Lehrmeinungen sprengt bzw. genauer gesagt, unter bestimmten Bedingungen sprengen kann.

Was geschieht denn nun durch die Entnahme großer Fische insbesondere aber durch die Entnahme der großen Rogener? Effekte durch die Entnahme großer Fische entfalten sich hauptsächlich auf zwei Ebenen. Dies sind

1. ökologische Effekte
2. evolutionäre Effekte.

1. das Längenwachstum der Larven,
2. die Massezunahme der Larven und v. a.
3. das Überleben von Hungerzeiten.

Zusammenfassend kann an dieser Stelle festgehalten werden: Große (alte) Laichfische sind produktiver und ihre Nachkommenschaft ist vielfach vitaler als die Brut kleinerer und jüngerer Laichfische. Diese Vitalität der Nachkommenschaft kann gar nicht hoch genug bewertet werden, denn nur ein Bruchteil von einem Prozent der Brut überlebt und bil det die Grundlage für die nächste Laichergeneration.
Nun ein Beispiel zu Effekten, welche sich durch die selektive Entnahme von großen Fischen \textit{genetisch} manifesteren können (\textit{evolutionäre Effekte}), und dazu zählen auch die eingangs dieses Beitrags diskutierten Effekte auf den Eintritt der Geschlechtsreife beim Kabeljau. Wissenschaftler um die Gruppe von \textit{Conover \\\& Munch} (2002) haben sich intensiv mit Effekten beschäftigt, die durch die exzessive Entnahme speziell großer Fische entstehen können. Ihr Untersuchungsmodell war der Mondähenfisch (\textit{Menidia menidia}). In drei etablierten Versuchsgruppen wurden entweder

1. immer nur die Großen (\textit{GSG}),
2. oder immer nur die Kleinsten (\textit{KSG}) und
3. immer Zufällige (\textit{Kontrolle}) aus der Fischpopulation entnommen (Abbildung 5).

Bereits nach vier Generationen waren verschiedene Leistungsparameter bei der Nachkommenschaft verändert. Diese Effekte waren nur sehr schwer umkehrbar. Folgendes stellten die Wissenschaftler fest: Die Nachkommenschaft der Gruppe, aus welcher immer nur die großen Fische entnommen wurden, wies folgende Charakteristika auf:
1. niedrigere mittlere Stückmassen,
2. ein reduziertes Längenwachstum,
3. ein reduziertes Massenwachstum,
4. eine geringere Fruchtbarkeit (66 % weniger Eier in der Gruppe, aus der immer die Größen entnommen wurden, 47 % mehr Eier in der Gruppe, aus der immer die Kleinere entnommen wurden, Abbildung 6).
5. ein niedrigeres Eivolumen,
6. eine geringere Größe der Larven beim Schlupf,
7. eine verringernde Futtermahrung der Larven,
8. ein reduziertes Überleben der Larven,
9. eine reduzierte Futtersuche der Larven.

Nun sind wir wieder bei dem, was die Fischerei macht. Sie entnimmt selektiv große Fische und schont die Klei- nen über Mindestmaße und -maschenweiten, was ja auch bei unreifen Fischen völlig richtig ist. Allerdings ist es weniger richtig, sämtliche maßige Fische, und vor allem die großen Tiere gnadenlos aus den Gewässern zu entnehmen. Die Fischerei führt also die Experimente, welche CONOVER & MUNCH im Kleinen an einer Modell- fischart durchführten, im großen Maßstab durch. Die Folgen sind bislang unabhän- gibel. Erste Indizien, dass evolutionäre Effekte stattgefunden haben, zeigen je- doch die Dorschbestände im Nordatlantik, welche ganz zu Beginn dieses Aufsatzes erwähnt wurden. Natürlich wirken hier Berufs- und Angelfischerei zu- sammen und wahrscheinlich ist die Berufsfischerei ein wichtigerer evolutionärer Faktor beim Atlantik-Kabeljau als die Angeln. Doch in unseren Binnengewässern sieht das anders aus, hier dominieren Angler.

Unter dem Eindruck dessen, was auf den letzten Seiten ausgeführt wurde, werden wir die oben aufgefüh- rten Lehrmeinungen einer Überprüfung unterziehen.

1. Den durch die Entnahme von Fischen reduzierten Populationen stehen nun größere Pro-Kopf-Res- Sourcen zur Verfügung. **Dies stimmt unbetrüg!**

2. Die nun größeren Ressourcen steigern das Überleben und die Fruchtbarkeit (Fitness) in den Populationen. **Dies ist nur bedingt wahr**, denn durch die selektive Entnahme größerer und alter Fische kann über materna- le Effekte und die damit verbundene reduzierte Futtermahrung, reduzierte Futtersuche und -verwertung sowie reduzierter Überleben der Larven der Pro-Kopf-Energiefluss und somit die Fitness der Nachkommenschaft eingeschränkt werden. Nachfolgend führt dies u. U. dazu, dass die Fischpopulation weniger gut in der Lage ist, die verfügbaren Nahrungsressourcen (Energie) in Populationswachstum umzusetzen.

4. Jüngere Fische sind bessere Laichtiere als alte Fische. **Definitiv nein!!!** Die Nachkommenschaft von Erstlachern besitzt eine nachgewiesene schlechte Qualität. Mindestmaße sollen jedoch sicherstellen, dass Fische sich einmal reproduziert haben, ehe sie im Koböpf landen. Wenn die erste Nachkommenschaft aber eine schlechte Qualität (und damit eine niedrige Überlebensrate) besitzt, welchen Sinn machen dann die Mindestmaße? Sollten die Fische nicht mehr als einmal abgeblieben (höhere Mindestmaße) Machen Höchstmaße dann nicht mehr Sinn (Schutz der wertvollen alten Laicher, Schutz des wertvollen genetischen Potentials)?

5. Fische besitzen eine hohe Anpassungsfähigkeit an Umweltbedingungen (phänotypische Plasti- zität).

Definitiv nein, denn mindestens 20 % der Leistungsparameter bei den Fischen sind genetisch bedingt!
Abb. 5: Versuchsaufbau von Conover u. Munch (2002) zur größenselektiven Entnahme beim Mondärensaitenfisch (Menidia menidia)

Abb. 6: Abnahme der Fruchtbarkeit (Eianzahl) nach vier Generationen größenselektiver Entnahme bei Menidia menidia (Conover u. Munch 2002)

Warum jedoch blieben diese Effekte so lange entdeckt bzw. wurden durch die Fischereiwissenschaft so lange ignoriert? CONOVER et al. (2005) geben darauf die Antwort:

2. Es existierte seit langem der Glaube (und existiert immer noch), dass die phänotypische Plastizität in der Natur so hoch ist, dass genetische Einflüsse in der Natur leicht durch Umwelteinflüsse wie Temperatur, Sauerstoff und Nahrungsangebot überlagert werden. Typische bioenergetische Modelle implizieren, dass genetische Effekte schwach, Umwelteffekte hingegen stark sind.

Dies ist ein Fehlschluss, wie wir eben festgestellt haben. Evolution kann innerhalb weniger Generationen stattfinden.

Ausblick

- schnelles Wachstum,
- Fischgröße,
- hohe Fressraten,
- gute Futterverwertung

negativ ausselektiert. Dieses reduziert die Fitness der Fischpopulationen.

Dieser Aufsatz, der sich auf eine Literaturstudie gründet, versteht sich als Anstoß zum Nachdenken. Er soll eine Diskussion anregen und hoffentlich auch einige althergebrachte, seit langem akzeptierte Dogmen einer erneuten Betrachtung unterziehen.

Aus diesem Aufsatz lassen sich Fragen wie diese ableiten:

1. Sichern Mindestmaße wirklich die Reproduktion von Fischpopulationen?
2. Sollten nicht speziell in bedrohten Fischpopulationen große und alte Tiere geschopt werden?
3. Führt die üblicherweise selektive Angelfischerei im großen Stile zu evolutionären Veränderungen innerhalb der Fischbestände?
4. Gibt es mehr „vernünftige“ Gründe laut Tierschutzgesetz als das Kochtopfangeln? Warum soll jeder „maßige“ Fisch entnommen werden,

5. Müssen wir unbedingt auf große Laichtiere wie z. B. Dickdorsche speziell in deren Laichzeit angeln, jetzt, da wir wissen, wie unbedingt wertvoll diese Fische für die Art- und Leistungserhaltung sind?

Es sollen an dieser Stelle keine neuen Dogmen aufgebaut werden. Denn vieles, was für Meeressfische schon gut untersucht ist, bedarf bei den Süßwasserfischen noch einer soliden wissenschaftlichen Untermauerung. Jedoch einfach ignorieren wie bisher können wir diese vielen neuen Untersuchungen nicht, auch wenn noch weiterer Forschungsbedarf besteht!

Ein Literaturverzeichnis kann bei den Autoren angefordert werden.

Anthropomorphismus und „mentales Wohlbefinden“ von Fischen
Eine neue interessante Abhandlung zum Thema Schmerzempfinden bei Fischen von James D. Rose

Dr. Thomas Meinelt - Leibniz-Institut für Gewässerökologie und Binnenfischerei, Abt. Binnenfischerei, Berlin und
Dr. Michael Pietrock, University of Saskatchewan, Canada