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Glossary and definitions 
 

Area Refers to the three study locations consisting of a MPA and OA pair 

CPD  Conditional probability distribution 

CPUE   Catch per unit effort 

C&R  Catch-and-release 

FIE  Fisheries-induced evolution 

GLM  Generalized linear model 

GLMM  Generalized linear mixed model 

MPA  Marine protected area 

OA  Open access 

PSD  Proportional stock density 

Site  Refers to the protection status (MPA and OA) 

TL  Total length 
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Abstract 
Pike (Esox lucius) constitute an important target species in recreational fisheries across 

their distributional range and belong to the top three target species of anglers in 

Germany. Anglers and fishers impact on the abundance of target species, usually 

reducing biomass and leading to size and age truncation through mortality. Additionally, 

in angling with artificial lures hook avoidance learning and selection may lead to angling-

induced timidity effects, where the reactivity of surviving pike to future capture is reduced. 

In the present study, catch per unit effort as a measure of abundance as revealed by 

different gear types were compared between three marine protected areas (MPA) and 

nearby open access areas (OA) in lagoons of the southern Baltic Sea in Germany. 

Additionally, pike behavior towards lures was examined using the MPA vs. OA contrast 

as a natural experiment in differential exposure to past fishing pressure. It was 

hypothesized that fisheries mortality leads to higher abundances and larger sizes of pike 

inside MPAs and that timidity is present in exploited parts of the population and manifests 

in differential angling vulnerability of individuals between MPA and OA sites. In support 

of the first and second hypothesis, it was found that inside MPAs pike were more 

abundant and the share of large fish was higher relative to OA sites in two areas. 

Supporting the third hypothesis, pike inside MPAs exhibited increased levels of 

aggression towards artificial lures. Moreover, it was found that the fish vulnerable to 

angling in OA sites encompassed the faster growing phenotypes, suggesting the 

potential for selection. Comparison of relative abundances between MPAs and OAs 

assessed by angling and non-angling gears could not quantify the absolute effect of 

timidity on catch rates, either due to a small effect size or because sampling gear biases 

prevented an unpolluted measure of true relative abundance differences among sites. In 

light of the collective evidence in this thesis, it is concluded that differences in pike 

angling catch rates among MPA and OA sites were mainly driven by the abundance-

increasing impact of pike protection in MPAs, with angling-induced timidity having 

second-order effect. The presented evidence shows that pike in the coastal areas of the 

German Baltic coast exhibit angling-induced timidity and that pike removals reduce 

abundance and catch rates. The possible angling-selection on faster-growing pike may 

reduce the growth potential of the evolving stock in the future. Controls on total fisheries 

mortality, commercial and recreational, is needed to protect pike abundances and high 

catch rates. Rotating spatial closures may be one underutilized option that might protect 

both pike and pike catch rates to anglers, but in order to reap the benefits access to 

temporarily opened sites must also be allowed to anglers and not just fishers. 
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1 Introduction 
The adverse effects of fishing on fish stocks are commonly associated with commercial 

fisheries, where failure in management has left many stocks in poor status and sparked 

a major controversy on the sustainability of wild fish (Pauly et al. 1998; Jackson et al. 

2001; Mason 2002; Myers & Worm 2004; Juan-Jordá et al. 2011; Hilborn et al. 2020). In 

contrast, the impact of recreational fishing on wild fish stocks is discussed less frequently 

despite its potential for effects of comparable magnitude if poor management is in place 

(Post et al. 2002; Lewin et al. 2006). Recreational fishing is nowadays the predominant 

form of fishing in many industrialized countries around the world, particularly in inland 

waterbodies and coastal environments (Coleman et al. 2004; Arlinghaus et al. 2006, 

2015). The number of anglers has long outnumbered that of commercial fishers 

(Arlinghaus et al. 2019). Similar to commercial fisheries, angling can cause a truncation 

of the size structure and reduce the density of the target species (Goedde & Coble 1981; 

Mosindy et al. 1987; Pierce et al. 1995; Arlinghaus et al. 2010; Ahrens et al. 2020) and 

even the collapse of entire stocks has been documented as a consequence of 

recreational overfishing (Post et al. 2002; Erisman et al. 2011). In addition, angling has 

the potential to cause changes in life-history and behavior of the target populations 

(Arlinghaus et al. 2009; Saura et al. 2010; Claireaux et al. 2018; Monk et al. 2021). Since 

in angling the fish takes the decision that determines the outcome of an encounter with 

a hook (Lennox et al. 2017), behaviors that reduce angling vulnerability benefit the target 

population in the presence angling pressure. Such behaviors could thus become 

increasingly prominent in fished populations, either due to plastic changes through 

learning following a hooking experience (Beukema 1970) or due to ongoing selection 

and resulting evolutionary changes through the removal of the vulnerable stock 

component (Uusi-Heikkilä et al. 2008). 

Animals can alter their behavior in response to predation and angling can be thought of 

as a form of predation (Ahrens et al. 2012; Klefoth et al. 2012). Hook avoidance in 

response to hooking experiences has been found in different species and can be 

attributed to learning, i.e. behavioral plasticity (Beukema 1996, 1970; Raat 1985; Young 

& Hayes 2004; Klefoth et al. 2013). There are indications that not only a direct capture 

event is necessary for the acquisition of hook avoidance but the ingestion of a bait without 

a successful landing may be sufficient to render individuals invulnerable to fishing gear 

(Beukema 1970; Fernö & Huse 1983). Also, social learning has been put forth as a 

mechanism leading to reduced angling vulnerability in individuals witnessing the hooking 

of a conspecific but the majority of studies fails to find such effect and private hooking 

experiences seem to be the main mechanism for hook avoidance (Wegener et al. 2018; 
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Louison et al. 2019; Lovén Wallerius et al. 2019; Chen & Zeng 2020; Lovén Wallerius et 

al. 2020; Czapla et al. 2023). A number of studies have found rapidly declining catch 

rates within relatively short time periods despite only minor or no changes in overall fish 

abundance, likely driven by learned hook avoidance (Van Poorten & Post 2005; Askey 

et al. 2006; Blackwell et al. 2023; Wegener et al. 2018; Koeck et al. 2020). Particularly 

fisheries with a high proportion of catch-and-release (C&R) angling, a practice that is 

increasingly common and even mandatory in some localities, bear the potential for 

learned hook avoidance (Bartholomew & Bohnsack 2005). Individuals released after a 

hooking event have been found to exhibit short-term alterations in behaviors such as 

activity and habitat preferences but recover to normal values within weeks after the 

capture (Hoolihan et al. 2011; Baktoft et al. 2013; Ferter et al. 2015; Klefoth et al. 2008; 

Klefoth et al. 2011). Many studies show that hook avoidance is retained only for a limited 

time as witnessed by a significant boost in catch rates after the reopening of the fishery 

following fishing closures (Wegener et al. 2018; Koeck et al. 2020). The duration for 

which individuals retain learned lure avoidance ranges from less than seven months up 

to one year according to different studies conducted with common carp Cyprinius 

carpio L. (Beukema 1969; Raat 1985; Czapala et al. 2023). Interestingly, catch rates also 

increase when fish with learned avoidance towards a certain lure type are exposed to a 

novel, previously unknown lure, which further suggests the capacity for associative 

learning in fish with respect to fishing gear (Louison et al. 2019). In line with these 

findings, the fly-fishing success in a trout stream subject to high angling efforts was 

increasing with smaller, more subtle flies and angler skill which was deemed necessary 

to “outsmart” fish (Young & Hayes 2004). The scope for learning may be more 

pronounced in lure fishing as compared to fishing with natural bait due to the distinct and 

often unnatural characteristics of lures such as color, movement, size and sound 

(Beukema 1970; Arlinghaus et al. 2017a). 

Besides individual learning experiences, angling can also alter the behavior and life-

history traits of targeted fish stocks through fisheries-induced evolution (FIE), i.e. genetic 

changes caused by fishery-related alterations in the traits that maximize fitness (Law 

2000; Uusi-Heikkilä et al. 2008). Even when harvested unselectively, fish evolve faster 

life-histories and associated changes in behavior and metabolic rate are possible due to 

correlations between these traits (Heino et al. 2015). Angling, however, is highly selective 

towards various attributes of fish. Body size (Keiling et al. 2020; Bieber et al. 2023a) and 

stomach content (Bryan 1974; van Densen & Vijverberg 1982; Raat 1991; Pope et al. 

2005) were both repeatedly found to significantly predict angling vulnerability. If selection 

favors small body size through the removal of large fish, a short life-history is likely to 

emerge where juvenile growth increases, fish mature early and the investment in gonads 
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hampers adult growth rates (Heino et al. 2015). Fisheries-induced effects on growth were 

indeed observed both under laboratory conditions and in the wild (Saura et al. 2010; Alós 

et al. 2014; Uusi-Heikilä et al. 2015). In addition, personality traits (i.e. consistent 

individual differences in behavior) (Conrad et al. 2011) were found to affect angling 

catchability. For example, a number of studies successfully linked boldness (i.e. the 

willingness to feed in the presence of a predator) to angling vulnerability (Klefoth et al. 

2013, 2017; Wilson et al. 2015; Tsuboi et al. 2016). However, the relationship seems to 

be context dependent given that various studies were unable to find this effect 

(Kekaäläinen et al. 2014; Vainikka et al. 2015; Härkönen et al. 2016; Keiling et al. 2020; 

Bieber et al. 2023a) and Wilson et al. 2011 even found timid fish to be more vulnerable. 

Also, exploration (i.e. the willingness to explore novel environments) was associated with 

increased angling vulnerability (Alós et al. 2012, 2016; Härkönen et al. 2014, 2016). 

Since personality traits were found to have a genetic basis in fish (Dochtermann et al. 

2014), there is a risk that angling leads to the genetic manifestation of timid and avoidant 

fish (Monk et al. 2021). The genetic basis of factors determining angling vulnerability in 

fish was impressively demonstrated in a selective breeding experiment in black bass 

(Micropterus salmoides Lacépède) where fish vulnerable and invulnerable to angling 

were bred in separation and the magnitude of the trait increased in each generation, 

leaving a highly vulnerable and a highly invulnerable selection line (Philipp et al. 2009). 

In line with this, field studies found a correlation between angling pressure and gear 

avoidance (Alós et al. 2015a, Colefax et al. 2016) and studies from spear-fishing 

environments have termed fish wariness “the most sensitive indicator of fishing pressure” 

(Goetze et al. 2017). While the evolutionary response to fishing may be purely seen as 

an adaptive mechanism increasing overall survival, there are concerns that it has the 

potential to favor traits that may be detrimental for the overall fitness of the stock (Sutter 

et al. 2012) and changes in yield-determining traits are a thread to sustainable fisheries 

management (Heino & Godø 2002). The combined effect of plastic and genetic changes 

affecting behavior were hypothesized to lead to the emergence of an increasingly timid 

population where fish are avoidant and harder to catch was thus termed “timidity 

syndrome” (Arlinghaus et al. 2016a, 2017b). 

Northern pike (Esox lucius L., hereafter pike) are large-bodied predatory fish that are 

commonly found in most freshwater bodies and brackish coastal areas of the temperate 

zones in the northern hemisphere with a key role for ecosystem functioning (Crossman 

1996; Eriksson et al. 2009). Pike are a popular target species for anglers due to their 

large size and wide distribution (Mann 1996). Despite their popularity among recreational 

fishers, there is limited literature on the occurrence of timidity. Beukema (1970) found 

that pike previously unexposed to angling showed initially high and subsequently rapidly 
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declining catch rates for artificial lures (spinners) while catch rates with life bait remained 

high throughout all sampling days. This indicates that pike are able to recognize and 

actively avoid spinners but fail to do so with life bait which was explained by the greater 

variability of stimuli emanating from life bait when compared to the spinner. Pike were 

moreover found to show distinct declines in catch rates when fishing pressure was 

maintained for extended periods under C&R, indicative for learning (Kuparinen et al. 

2010; Arlinghaus 2017a). Arlinghaus (2017a) moreover observed higher catch rates with 

soft plastic lures when compared to spoons which was attributed to the more natural 

appearance of the former. However, the authors found no indications for differential 

learning between the two lure types. A recent study from Lucas et al. (2023) investigating 

the response of naïve pike towards artificial lures and dead bait under laboratory 

conditions found that differences in boldness of individuals explained angling 

vulnerability in a way that bolder pike exhibited a greater likelihood to attack both dead 

bait and lures. Boldness, however, was unrelated to the likelihood of hunting living prey. 

The investigated pike were moreover found to avoid fishing lures and dead bait over 

time, indicating learned avoidance even in the absence of hooks. Pike therefore should 

be a suitable species to investigate lure timidity as they fulfill the conditions necessary to 

exhibit angling-induced lure avoidance: the potential for behavioral selection and 

learning. 

Management in small scale fisheries is typically data poor due to financial constraints 

and the lack of feasibility for providing fishery-independent data (Post et al. 2002). As a 

substitute, fishery-dependent data (such as catch per unit effort, CPUE) are commonly 

used to infer stock status as this is often the only available source of data and also its 

use as proxy for abundance in scientific surveys is omnipresent due do the good 

feasibility of sampling efforts (Jansen et al. 2013; van Gemert et al. 2022; Eklöf et al. 

2023; Tibblin et al. 2023). However, this implies major limitations as it assumes a directly 

proportional relationship between catch rates and the underlying abundance. Since the 

catchability q modifies the relationship between CPUE and abundance, inferences on 

stock status drawn from CPUE only apply if q is constant. 

𝐶

𝐸
 = 𝐴 ∗ 𝑞 

Equation 1: Relationship between catch (C), effort (E), abundance (A) and catchability 

(q) (Hilborn & Walters 1992) 

If the catchability changes with variations in abundance or fishing pressure, however, the 

relationship between CPUE and abundance becomes nonlinear. Either catch rates may 
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remain high despite a decline in abundance (“hyperstability”) or drop disproportionately 

faster than the underlying abundance (“hyperdepletion”) (Figure 1). 

 

Figure 1 Schematic representation of different relationships between CPUE and 

abundance, modified by changes in catchability. 

Under hyperstability, catch rates (perceived stock size) can be high even when the stock 

is already severely depleted. It typically occurs if fish are aggregating or bound to certain 

structures which facilitates capture and bears the risk of critical depensation (Post et al. 

2002; Lewin et al. 2006; Erisman et al. 2011). Under hyperdepletion, on the other hand, 

catch rates can be low despite relatively high abundances. This phenomenon is often 

behavior mediated where a vulnerable component of the stock is harvested while the 

remaining individuals are invulnerable to the gear and is thus a common symptom of 

gear avoidance (Hilborn & Walters 1992; Ahrens et al. 2012; Alós et al. 2019). While the 

catchability is also modified by other factors, such as angler skill, food availability and 

seasonal variations (Bryan 1974; Baccante 1995; Mann 1996; Seekell et al. 2011), 

angling pressure was found to have the strongest effect on catchability and the 

importance of this relationship has been stressed repeatedly (Walters & Bonfil 1999; 

Pauly et al. 2002; Kuparinen et al. 2010). 

When confronted with low catch rates, which are a main driver of angler satisfaction 

(Arlinghaus 2006; Hunt et al. 2019), managers are bound to implement measures to 

improve the status. One prominent management tool is stocking of additional fish, which 

satisfies anglers and may seem appropriate from a manager’s perspective given that 

data suggest declines in abundance (Arlinghaus & Mehner 2005). However, this 

approach fails to achieve long term integrity of the system and is unlikely meet the 
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management goals from a conservation perspective as it bears ecological risks. While 

catch rates may temporarily increase if catch-size, naïve fish are stocked, the initial 

conditions are likely to quickly recur when hook avoidance is acquired also in the newly 

stocked fish (Blackwell et al. 2023). In such case, other measures, such as rotating 

closures, could be more appropriate and less risk prone (Feary et al. 2011; Januchowski-

Hartley et al. 2014; Camp et al 2015; Wegener et al. 2015; Koeck et al 2020). 

Systems to study hook avoidance need to allow for the comparison of fish behavior in 

both, the presence- and absence of angling pressure. This may be either temporally or 

spatially. If spatial sites are ought to be compared, such system could be thought of as 

different lakes where some are fished while others are unfished. However, lake specific 

variation could blur the effect of interest and can only be compensated through a large 

number of replicates. One way to circumvent this is by studying the effect within one 

system, when areas with and without angling pressure can be neatly delineated. Marine 

protected areas (MPA) offer this opportunity and can be used as reference areas to study 

the effects of fishing (Agardy 1994; Januchowski-Hartley et al. 2011, 2014; Alós et al. 

2015a, b). A prerequisite for such comparison, however, is that the species of interest 

has a sufficiently small home range in order to assure that the majority of individuals lives 

within the respective site and does not frequently travel between the sites so that strong 

differences in the exposure to fishing gear can be expected. A second prerequisite for 

such study is that the species of interest must be actively targeted by anglers in the open 

access (OA) sites, so that hook avoidance can be assumed to occur. 

A suitable species for such study is the northern pike. Pike are ambush predators that 

commonly do not travel large distances and apart from spawning migrations in early 

spring, pike display small home ranges and have been found to be inactive most of the 

time (Diana 1980; Berkström et al. 2021; Dhellemmes et al. 2023b). While generally 

being considered to have a low salinity tolerance, pike can be found across the coastal 

areas of the Baltic Sea where they constitute an important fisheries resource for both 

anglers and fishers (Olsson et al. 2023). Differences in catch rates between fished and 

unfished sites have been observed previously for pike in Swedish coastal waters of the 

system and concomitant differences in food web functioning indicate that such 

differences are indeed due to higher predator abundance in unfished sites (Edgren 2005; 

Bergström et al. 2022a, b; Eklöf et al. 2023). This confirms the presence of fisheries 

induced effects in the broader system and also suggests that the desired effects may be 

present and observable in such setup. In the brackish lagoons around the German island 

or Rügen, in the southern Baltic Sea, pike are a popular game fish for anglers from the 

region and beyond due to their fast growth and the high proportion of trophy fish in the 

stock (Koemle et al. 2021; Arlinghaus et al. 2023a, b; Riepe et al. 2023; Rittweg et al. 
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2023). Traditionally, pike are also exploited by commercial fishers and conflicts have 

arisen between the groups, particularly in the light of a recent noticeable decline in catch 

rates (Vogt 2020; Arlinghaus et al. 2021; van Gemert et al. 2022). About 74% of the pike 

captured by anglers are released (Arlinghaus et al. 2023b), which offers the potential for 

pike to exhibit both evolutionarily based wariness of but also learned hook avoidance. 

The aim of the study was to evaluate the presence of hook avoidance and its contribution 

to low angling catch rates in a mixed coastal pike-fishery co-exploited by both anglers 

and fishers. The hypotheses were that 

H1 Pike abundance is reduced in OAs compared to MPAs. 

H2 Pike size structure is truncated in OA compared to MPAs. 

H3 Timidity leads to more cautious behavior of pike towards lures, negatively 

impacting angling CPUE. 

H4 More aggressive and faster growing pike are selectively captured with angling. 

H5 More realistic (1) lure types and (2) lure colors show higher catch rates in the OA 

than in the MPA while naïve fish in the MPA strike unnatural lure types and colors 

equally well or better. 

H6 Pike recaptured using the same gear will exhibit a longer time interval between 

their first and second capture compared to pike recaptured using different gear, 

due to learned avoidance behavior. 

H7 The probability to recapture a pike by angling is higher in the MPA due to the lack 

of ongoing reinforcement of lure timidity. 

The study contributes to a better understanding of the relevance of lure avoidance in 

pike angling, a desired target species of many recreational fishers in the northern 

hemisphere, and moreover give managers an indication about the reliability of pike 

angling catch rates as a proxy for abundance.  
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2 Methods 

2.1 Description of the study area 

The Baltic Sea is a brackish water body located in northern Europe. It is characterized 

by strong salinity gradients (decreasing salinity from southwest to northeast) which result 

from riverine freshwater inflow and seawater exchange with the North Sea through 

narrow straits near Denmark. Given the oligo- to mesohaline conditions it is inhabited by 

both marine and freshwater species. Changes in water levels occur frequently and are 

mainly driven by Baltic-wide prevailing wind-directions. The study was conducted in the 

southern Baltic Sea around the German Island of Rügen (Figure 2). The region is 

characterized by complex, shallow lagoon systems which significantly influence the 

salinity dynamics by retaining freshwater stemming from several larger river systems 

(e.g. Recknitz, Peene, Ryck & Barthe) (Arlinghaus et al. 2023a; Niessner et al. 2023a). 

While the entire system ranges about 100 km from west to east and covers a surface 

area of about 2000 km2 (Arlinghaus et al. 2023a), the abiotic and biotic characteristics 

vary between the different lagoons and differences in the level of exposures to the open 

Baltic Sea cause gradients not only in salinity but also in nutrient loads and visibility, 

thereby also affecting species composition (Niessner et al. 2023a). Average water 

depths of the lagoons range between 1.8 - 5.8 m and mean phosphorus contents lie 

between 40 - 100 µg/l (Niessner et al. 2023a). Consequently, secchi-depths range from 

0.4 m for the lagoons more exposed to Baltic waters and 1.9 m for more sheltered 

lagoons affected by agricultural runoff (Niessner et al. 2023a). Within the lagoons, many 

freshwater species are commonly found, such as bream (Abramis brama L.), roach 

(Rutilus rutilus L.), perch (Perca fluviatilis L.), pikeperch (Sander lucioperca L.) and pike 

(Winkler 1989).  

Between 2019 and 2023, an inter- and transdisciplinary research project called 

BODDENHECHT (www.boddenhecht-forschung.de) was carried out, focusing on various 

aspects of the pike stock inhabiting the brackish lagoons around the Islands of 

Hiddensee, Rügen and Usedom and the Peninsula of Fischland-Darß-Zingst (Figure 2). 

The project was funded by the EU-Maritime Fisheries Fund (EMFF) and the federal state 

of Mecklenburg-Vorpommern. This thesis is embedded in the broader context of the 

project and takes advantage of previous works conducted within the project. These 

include previous tagging procedures of pike with n = 389 acoustic telemetry tags and 

n = 4,685 external floy-tags (Dhellemmes et al. 2023a, b). Tagging took place in various 

locations across the lagoon system and was aided by anglers, guides and fishers 
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involved in the project. Recaptures of marked fish could be reported via an online 

platform and a lottery chance was given for recaptures to incentivize reporting. 

While some of the data used in this thesis derive from samplings dating back to 2019 

and were gathered in different parts of the system, the main body of data was collected 

during a systematic sampling of the three comparison areas described in the following 

section. 

 

Figure 2 Extent of the brackish lagoon system on the Baltic coast of northeast Germany. 

Colors visualize average salinities. The system was subject to prior samplings and this 

data is also used in this study. 

2.2 Characterization of sampling sites 

To be able to make inferences beyond a single location, three comparison areas were 

chosen for sampling, each consisting of a protected (MPA) and an unprotected (OA) site. 

An initial set of potentially suitable study locations was identified via GIS. Following a 

pre-selection process, considering e.g. the proximity to previous tagging locations of pike 

with hydroacoustic transmitters, five locations were scouted to assess the situation on-

site under different aspects such as (1) structural similarity between the sites and (2) the 

presence of infrastructure (accessibility, nearest boat slip). Finally, three areas were 

chosen as best compromising these aspects. The three pairs will be referred to as ‘areas’ 

hereafter while the protection status (MPA / OA) is referred to as ‘site’. Within each area, 
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the extend of the investigated sites was defined to an approximately equal dimension 

where possible (Figure 3, Table 2). 

 

Figure 3 Locations and geographical settings of the three comparison areas subject to 

sampling. Protected sites (MPA) are displayed as green polygons, fished sites (OA) as 

blue polygons. Mint green color denotes the overall extent of areas with protection status. 

Abiotic parameters of the sampling sites are displayed in Table 1. No significant 

differences in salinity, visibility and temperature were found for between MPA and OA in 

any of the comparison areas (Appendix 1). Recorded mean macrophyte coverages were 

at comparable levels between the sites for most areas and seasons. Obvious differences 

in macrophyte coverage between MPA and OA were only evident in spring in 

Werderbucht and in autumn in Sellin, where the mean coverage was lower in the MPAs 

(Table 1, Figure 4). Since values for mean macrophyte coverage were calculated using 

weighted means (see section 2.3.2.II), no statistical testing was conducted. Mean water 

depth was shallower in the MPAs of Ummanz and Sellin when compared to the OA sites, 

while there was no difference in Werderbucht (Table 2). Wave exposure was lower in 

the MPAs for both Werderbucht and Ummanz, indicating a higher shelteredness of these 

sites (Table 2). 
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Table 1 Abiotic characteristics and macrophyte coverage of the six sites over the course 

of the three sampling seasons. 

Area Season Site 
Macrophyte 

Cover [%] 

Water Temp 

[°C ± SD] 

Salinity 

[PSU ± SD] 

Visibility 

[m ± SD] 

Werderbucht 

Spring 
OA 34.6 15.9 ± 3.3 8.7 ± 0.2 0.6 ± 0.2 

MPA 20.4 15.7 ± 3.5 8.9 ± 0.3 0.6 ± 0.2 

Summer 
OA 62.2 18.5 ± 3.8 9.6 ± 0.5 2.8 ± 1.5 

MPA 65.3 18.3 ± 4 9.6 ± 0.6 2.8 ± 1.5 

Autumn 
OA 45.9 7.4 ± 4.7 8.7 ± 0.2 3.7 ± 0.7 

MPA 47.6 6.6 ± 3.9 8.8 ± 0.8 3.1 ± 1.2 

Ummanz 

Spring 
OA 22.5 14.3 ± 3.5 8.9 ± 0.2 1.3 ± 0.6 

MPA 24.5 14.2 ± 3.5 9.0 ± 0.1 1.3 ± 0.6 

Summer 
OA 29.7 19.5 ± 3.2 9.6 ± 0.7 1.4 ± 0.6 

MPA 24.9 19.4 ± 3 9.7 ± 0.7 1.3 ± 0.6 

Autumn 
OA 54.0 9.4 ± 3.8 8.7 ± 0.5 3.9 ± 0.2 

MPA 66.9 9.4 ± 3.9 8.7 ± 0.5 3.9 ± 0.2 

Sellin 

Spring 
OA 14.5 11.1 ± 7.5 7.5 ± 0.1 1.5 ± 0.8 

MPA 12.3 11.0 ± 7 7.3 ± 0.2 1.3 ± 0.6 

Summer 
OA 39.6 19.7 ± 3.9 8.0 ± 0.5 1.4 ± 0.7 

MPA 44.6 19.5 ± 4.1 7.9 ± 0.6 1.1 ± 0.1 

Autumn 
OA 44.6 7.6 ± 5.1 7.5 ± 0.5 2.5 ± 0.4 

MPA 6.38 7.5 ± 5.1 7.4 ± 0.5 2.4 ± 1.4 

 

Figure 4 Bar plots displaying the macrophyte coverages determined by visual surveys in 

each site (color) and across seasons (x-axis) in the three comparison areas (horizontal 

panels). 
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Table 2 Non-seasonal site characteristics and geographic information. No information on 

wave exposure was available for Sellin. 

Area Site 
Latitude 

[°N] 
Longitude 

[°E] 
Surface 

[km2 / ha] 
Mean 

Depth [m] 

Max. 
Depth 

[m] 

Wave 
Exposure 

[SWM] 

Werderbucht 
OA 54.4237 12.9501 1.1 / 110 0.9 ± 0.7 3.9 18538.1 

MPA 54.4344 12.9461 1.4 / 140 0.9 ± 0.4 3.7 11793.3 

Ummanz 
OA 54.4460 13.1602 1.5 / 150 0.9 ± 0.7 5.9 10890.8 

MPA 54.4600 13.1939 1.8 / 180 0.6 ± 0.4 3.9 3105.6 

Sellin 
OA 54.3645 13.6885 1.0 / 100 1.3 ± 0.4 2.6 NA 

MPA 54.3610 13.6500 0.4 / 40 1.0 ± 0.4 4.2 NA 

Werderbucht 

This area is located in the “Grabow”, a Bodden lagoon with highly variable conditions. It 

is situated in a channel between the main land and the easternmost extensions of the 

Darß-Zingst Peninsula, which constitutes the barrier between the Darß-Zingst 

Boddenchain and the Baltic Sea. The northern parts of the area, in which the MPA is 

situated, are less strongly exposed to the currents due a basin character and water 

masses are therefore retained longer here than it is the case in the more exposed 

southern part of the area (location of the OA site). Average salinity was 9 PSU (Table 1) 

but maximum values of 14 PSU have been recorded at rising Baltic water levels and can 

drop to values around 5 PSU when Baltic waters fall and turbid, low-salinity waters from 

the Darß-Zingst lagoon follow. The pike fishery in the Darß-Zingst lagoon is strongly 

dominated by anglers while the commercial fishery is comparatively small (Radinger & 

Arlinghaus et al. 2023). The MPA site at Werderbucht is located inside Nationalpark 

Vorpommernsche Boddenlandschaft Kernzone 1, an zone with strict exclusion of boating 

traffic and fishing activities since the implementation of the national park in the 1990s 

(Niessner et al. 2023b). However, few commercial fishers are excluded from these 

regulations for historical reasons and are in theory allowed to pursue commercial fishing 

inside the MPA. Other gears than eel traps could not be observed during the sampling 

period (see section 3.1.1), indicating that pike are not the primary focus of existing fishing 

activities in this site. Besides previous samplings for scientific purposes from within the 

project BODDENHECHT, the MPA has not experienced angling pressure for three 

decades. Depth was about 0.9 ± 0.7 m for the MPA and 0.9 m ± 0.4 [mean ± SD] for the 

OA (Table 2). However, the OA overall exhibited a larger portion of shallow areas which 

were compensated in the mean by the presence of a fairway channel (deep blue line in 

the OA in Figure 5, left). The latter was excluded from sampling due to boat traffic. 
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Overall, 69% and 65% of the area were shallower than 1 m in the OA and MPA, 

respectively. 

 

Figure 5 Left: Interpolated depth map of the comparison area Werderbucht. Depth is 

displayed by a color gradient from blue (deep) to yellow (shallow). Outline color displays 

the respective site. Right: Density plot of depth data per site (color). Diamonds display 

mean depth. 

Ummanz 

The area is part of the Bodden lagoon Kubitzer Bodden, located west of the Island of 

Rügen. In the system, pike landings from commercial and recreational fishers were 

recently found to be at comparable levels (Radinger & Arlinghaus 2023). The study area 

is semi-enclosed between the Island of Rügen to the east and the smaller Island of 

Ummanz to the west (Figure 3). Given the protection from wind on both sides through 

the land masses, the area has a sheltered character, which is more pronounced in the 

MPA part of the area while the OA experiences high waves more frequently (Table 2). 

The entire study area is part of the Nationalpark Vorpommernsche Boddenlandschaft – 

Pflege und Entwicklungszone in which angling and fishing is permitted. However, the 
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section considered MPA for this study underlies a boating prohibition and access from 

land is not allowed, therefore fishing and angling are indirectly prohibited. As with 

Werderbucht, exclusions from the boating prohibition exist for some fishers and therefore 

commercial fishing on pike takes place inside the MPA while angling does not. In 

addition, the MPA site is a spawning protection zone, rendering the intended fishing for 

pike illegal in April and May and thus effectively prolonging the pike spawning closure for 

one month. In Ummanz, the MPA was clearly shallower with water depths of 0.6 ± 0.4 m 

and 0.9 m ± 0.7 m [mean ± SD] for MPA and OA, respectively (Table 2). The OA 

exhibited a greater share of depths > 1 m which were not found in the MPA (Figure 6, 

right). While 86% of the MPA were shallower than 1 m, the respective figure for the OA 

was only 57%. Across all seasons, salinity was 9.2 ± 0.6 PSU [mean ± SD] and ranged 

from 8 - 10 PSU for both sites.  

 

Figure 6 Left: Interpolated depth map of the comparison area Ummanz. Depth is 

displayed by a color gradient from blue (deep) to yellow (shallow). Outline color displays 

the respective site. Right: Relative frequency of interpolated depth data per site (color). 

Mean depth is displayed by diamonds. 

Sellin 

The lake pair of Sellin (Neuensiener See [MPA] and Selliner See [OA]) is located on the 

easternmost tip of the Island of Rügen. The two lakes are enclosed by land but are 

connected to the Greifswalder Bodden lagoon via a channel and are therefore affected 

by regular changes in water levels and salinity. On the larger Bodden-level, fisheries 
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landings of pike were recently found to be roughly equal between commercial and 

recreational fishers (Radinger & Arlinghaus 2023). Both lakes lie within the jurisdiction of 

the “Biosphärenreservat Südostrügen”. In lake Selliner See (OA) both fishing and angling 

is permitted across most of the lake, except for a coastal strip along the south-western 

shore which underlies additional protection as “Naturschutzgebiet” (NSG; translates to 

“nature protection zone”) and where fishing is not permitted. These zones were excluded 

from sampling. The smaller lake Neuensiener See additionally is entirely declared NSG 

and fishing is more strictly limited here. While both angling and fishing are permitted, the 

delineation between the two lakes into MPA and OA was informed by stronger 

regulations in Neuensiener See where a maximum of 50 recreational fishing licenses are 

issued per year. Additionally, only very few spots are accessible from land due to dense 

reed belts along the lake shore and boating is only permitted to a handful of anglers, 

which effectively limits angling pressure for large parts of the lake. Mean depths were 

1.0 m ± 0.4 m and 1.3 m ± 0.4 m [mean ± SD] for MPA and OA, respectively (Table 2). 

Similar to Werderbucht, there was a fairway across the OA in which sampling was not 

pursued due to boat traffic (Figure 7). Overall, 60 % of the MPA were shallower than 1 m 

while this figure was only 18% for the OA. 

 

Figure 7 Left: Interpolated depth map of the comparison area Sellin with the smaller 

Neuensiener See (MPA) on the left and the larger Selliner See (OA) on the right. Depth 

is displayed by a color gradient from blue (deep) to yellow (shallow). Outline color 

displays the respective site. Right: Relative frequency of interpolated depth data per site 

(color). Mean depth is displayed by diamonds. 
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Across all seasons, salinity was 7.6 ± 0.6 PSU [mean ± SD] for the MPA and 

7.7 ± 0.5 PSU [mean ± SD] for the OA. Values ranged from 6.4 to 9.1 PSU in both sites. 

2.3 Fieldwork 

Main fieldwork efforts in the three comparison areas were conducted across three 

seasons (spring, summer, autumn) to capture seasonal variation in the data. Monthly 

fieldwork blocks were undertaken throughout the months April, July and October 2022. 

In each of these monthly blocks, each of the three areas were sampled over an 

approximately 10-day period within which a standardized sampling protocol took place 

(Table 3). This protocol comprised two randomized angling days, pike gillnetting, preyfish 

gillnetting, eDNA sampling, macrophyte sampling and setting of longlines which are 

further elaborated in the following sections. 

Table 3 Sampling periods for monthly fieldwork blocks for the three seasons. All dates 

refer to 2022. 

Area Spring Summer Autumn 

Werderbucht 22.04 - 04.05 24.07 - 03.08 23.10 - 02.11 

Ummanz 16.04 - 21.04 11.07 - 22.07 11.10 - 21.10 

Sellin 02.04 - 14.04 03.07 - 10.07 02.10 - 09.10 

After each monthly fieldwork block, additional randomized angling days (for the definition 

of the term randomized angling see section 2.3.3) were conducted in each area to 

increase the number of observations since angling catches are known to be highly 

affected by daily variation. The additional angling days for each season took place after 

the monthly fieldwork block of the respective season. In some instances, angling days 

were temporally closer to the next monthly sampling block but were nonetheless 

assigned the season of the previous monthly fieldwork block in order to obtain balanced 

data with regards to season. The term season therefore does not strictly correspond to 

the meteorological term when it is referred to in the context of randomized angling data. 

It was distinguished between randomized and non-randomized angling days as sampling 

efforts for comparison angling between MPA and OA sites already took place starting in 

2020, however, the design and locations differed (see section 2.3.3). 

2.3.1 Monitoring of fishing effort 

To obtain data on the presence of both commercial and recreational fishing effort in all 

sites, observed fishing effort (gear type and quantity) was recorded throughout all 

samplings in the three comparison areas. 
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2.3.2 Recording of habitat characteristics 

2.3.2.I Depth 

In each area echosounder surveys were conducted to gather data on the depth structure. 

For this, parallel gridlines were projected on the area and followed at low speeds while 

recording depth profiles using an echosounder (Garmin GPS Map 923xsv). Data were 

subsequently converted from .sl2 to .csv format (https://kw-m.github.io/sl2-csv-

converter/) and a kriging algorithm was used to interpolate the grid in R and derive 

summary statistics such as average depth. Values were corrected for deviations from 

normal water levels at the day of sampling by using official measurements from nearby 

measuring stations. 

2.3.2.II Macrophyte coverage 

To capture differences in habitat quality for pike, the macrophyte coverage was recoded 

in each season during the main fieldwork blocks (April, July, October). In each area 12 

transects were followed from shore to the central parts of a waterbody (6 per site). At 10 

equally distanced points along each transect, the water depth and estimated macrophyte 

coverage were recorded. Where visibility was sufficient, the coverage was estimated by 

direct visual observations. At greater depths or increased turbidity an underwater 

camera-system was employed. This system consisted of a 2 m metal bar at which and 

a camera was attached facing downwards. The camera was connected to a screen via 

a cable, videos could thus be assessed in real time. To assess mean macrophyte 

coverages, mean coverage was calculated for each 1-m depth stratum per site and 

season. Subsequently, weighted means were determined from summarized data by 

using the share of each depth stratum (determined form echosounder survey) to the 

entire site as a weight. 

2.3.2.III Wave Exposure Index 

As a measure for the shelteredness of bays, the wave exposure index (Isaeus 2004) was 

used. For this, all raster points lying within the sampling areas were extracted from a 

SWM raster layer and mean values were calculated for each site. No values were 

specified in the raster file for the lake pair of Sellin. 
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2.3.3 Angling 

Angling data were collected by performing rod-and-reel fishing with artificial lures from a 

drifting boat as this best represents the local fishery and effectively allows to cover large 

surfaces (Figure 8). On each sampling day, the starting site (MPA / OA) of the first 

session was randomized to control for an effect of daytime. After termination of each 

session, sites were alternated. Session duration varied between 45 minutes and 2 hours 

but the duration of two consecutive sessions was equal to standardize effort between 

sites. A total of 4 sessions was fished on each fishing day (2 sessions in each site). On 

each fishing day, between one and three boats were employed with up to five people 

fishing on each boat. For each fishing session and angler, metrics potentially containing 

information on lure timidity were recorded such as the (1) lure specific information (lure 

type, - color & length), (2) the number of followers (i.e. pike following the lure without 

attacking it), (3) the number of bites (i.e. pike biting the lure but not being landed) and 

(4) the number of pike landed. In addition, water parameters (salinity [PSU], oxygen 

[mg/L] and Secchi depth [cm]) were measured in each site on each sampling day. Two 

slightly different sampling designs were followed, which are described in the following 

sections. Details on sampling efforts can be found in Table 6. 

 

Figure 8 Angling sampling with lures from the drifting boat at Werderbucht. 

Randomized angling 

Randomized angling took place between April 2022 and January 2023. Fishing was 

conducted within predefined polygons (Figure 3). To ensure that the data collected were 

representative of the overall sampling site rather than resulting from aggregated effort at 

certain spots deemed to be good fishing spots, the starting points of drifts were randomly 

chosen along the shore in accordance with the prevailing wind direction. Since the water 
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levels varied between days, at low levels some parts of the areas were excluded for 

sampling when water depth was too shallow for boating (~ 0.5 m). Lure choice was free 

but a lure had to be fished for two consecutive sessions (MPA and OA) to control for a 

possible lure effect confounding the site effect. Captured pike were tagged with external 

floy-tags upon capture and kept in sling bags until processing. Overall, 13 fishing days 

were conducted in Werderbucht and Sellin, each, and 14 days in Ummanz. 

Non-randomized angling 

Alternating angling between the sites took place on additional 19 days with a slightly less 

restrictive design where site choice was up to the boat captain and lures could be 

changed at any time. This type of fishing took also place in a greater variety of MPAs 

(Figure 9) and adjacent OAs but fishing was not strictly spatially confined within certain 

polygons as it was the case in randomized angling. Pike from non-randomized 

comparison angling were measured, sexed and tagged with external floy-tags on board 

immediately after capture and released on-site. 

 

Figure 9 MPA sampling locations of non-randomized angling (red dots). Size indicates 

effort, i.e. the sum of individual angling hours. Black circles around the three comparison 

areas Werderbucht, Ummanz and Neuensiener See (MPA of area Sellin) represent the 

respective sampling effort from randomized angling to set efforts in relation. In 

Werderbucht, the number of random and non-random angling sessions was roughly 

equal. Green polygons delineate areas with protection status. 
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Table 4 Descriptive data on overall angling efforts, separated by randomized and non-

randomized angling. 

 Randomized Angling Non-Randomized Angling 

Number of fishing days 40 19 

Accumulated effort (h) 964 800 

Number of areas fished 3 8 

Date range 2022-04-03 - 2023-01-19 2020-12-03 - 2023-03-04 

2.3.4 Angling-independent gears 

To provide alternative metrics of pike abundance to the angling catches, a number of 

angling independent gears were employed. These gears provided estimates of relative 

abundance (CPUE) potentially unbiased by timidity and were used to identify to what 

extent differences in angling catches between the sites were attributable to differences 

in abundance and/or catchability. Furthermore, the invasive gears (gillnets, longlines) 

functioned as reference gears to sample pike, as timid individuals were expected to be 

invulnerable to lures. Fish captured with these gears thus provided data on the 

invulnerable stock component for the analysis of length and growth. 

2.3.4.I Gillnets 

Two types of gillnets were used for sampling: (1) pike gillnets which were specifically 

designed with mesh sizes suitable for pike (50, 60, 75, 95- and 110-mm knot to knot, 

with each mesh size found within 20-m panels) and (2) preyfish gillnets to sample 

preyfish communities containing the mesh sizes 5, 6.25, 8, 10, 12.5, 15.5, 19.5, 24, 29, 

35, 43, 55, 70, 90, 110 and 135 mm (knot to knot) with each mesh size represented by 

a 2.5 m panel in accordance with European Standard EN 14757. Pike- and preyfish-

gillnets were 100 m and 40 m long, respectively and 1.5 m high. Both gillnet types were 

employed on one occasion within each season and area. For each netting event, the 

same procedure described below was followed. A total of 12 nets (6 per site) was 

randomly set around sunset. Positioning of nets was randomized in QGIS within the 

polygons of each site (command "Random points inside polygons”). Random net 

positions were adjusted to the nearest possible location if water depth was too shallow 

or locations were in boat fairways. Anker and flagged buoys were attached to each end 

and nets were set in accordance with the wind direction from the drifting boat. Setting of 

nets started approximately 1-2 h before sunset and lifting was initiated soon after sunrise 

(Figure 10). Employment time for nets was 15 h on average but ranged between 9-20 h. 

High values were due to logistic constraints preventing an earlier lifting of the nets when 

high catches of bream occurred since large bream were released in-situ. Effort was later 

on calculated under consideration of the employment time. Captured pike were tagged 
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with external floy-tags directly after capture to assign individuals to net-ID and the 

respective mesh size captured in and stored in life wells on the boat. Further processing 

took place on land. Pike mortality in the nets was temperature dependent with higher 

mortalities in summer. 

 

Figure 10 Setting of gillnets during sunset in the OA of Werderbucht in October 2023. 

2.3.4.II Longlines 

Six longlines were employed overnight (three in each site). Longlines consisted of a 30 m 

main line with five hooks on 50 cm steel leaders in equal distance to each other. Hooks 

were baited with live bait between 10 and 25 cm length. Longlines were attached to 

ankers on each end and marked with black flags. Locations were randomly chosen (see 

section 2.3.4.I Gillnets). No pike were caught with longlines at any point in time, hence 

longlines are not presented in the results section. 

2.3.4.III eDNA 

As an alternative metric reflecting pike abundance, 10 eDNA mixed samples were taken 

from each area (5 per site) and season. Mixed samples were created from 5 subsamples 

collected at ~ 20 m distance from each other. Three of the five mixed samples from each 

site were chosen adjacent to gillnet-locations while the remaining two were chosen 

according to the wind direction (1 sample along the upwind and downwind shore, 
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respectively). This design was chosen to be able to test for correlations between eDNA 

abundance and pike catches in gillnets but also identify potential relationships between 

wind direction and eDNA concentrations as eDNA is accumulates at the surface and may 

thus accumulate at downwind shores (Rourke et al. 2021). On each occasion, eDNA 

sampling was conducted prior to setting of gillnets. For all working steps, disposable 

gloves were used by the sampler to avoid unintended contamination with pike DNA from 

other sources. Subsamples containers (200 ml) were slowly filled with water by dipping 

them just below the water surface, thereby maximizing the amount of water from the 

surface layer where eDNA accumulates (Figure 11). Creation of mixed samples took 

place on land by dispensing the five sub-samples from one sampling point into a 5 L 

container, previously rinsed with demineralized water. In accordance with the 

manufacturer’s instructions of eDNA kits (Sinsoma GmbH, Austria), water was drawn 

through the filters from mixed samples with a syringe until the filter's permeability limit 

was reached due to clogging with particles and no more water could be drawn (Figure 

11). This limit was reached after 350 to 1000 ml. Within 48 h after sampling, filters were 

sent to Sinsoma GmbH, Austria for analysis. The samples were analyzed for pike-

specific DNA using ddPCR (droplet digital PCR) at 57°C to determine concentrations. 

The following primer-probe combinations were used (Olsen et al. 2015, 2016):  

Forward Primer:  5′-CCTTCCCCCGCATAAATAATATAA-3′,   

Reverse Primer:  5′-GTACCAGCACCAGCTTCAACAC-3′,   

Probe:    5′-FAM-CTTCTGACTTCTCCCC-BHQ-1-3′. 

Because initial analysis revealed a high share (29%) of samples with no detectable level 

of pike DNA, a second analysis was carried out to determine the presence of DNA from 

other species and assess the validity of samples. In three samples no DNA was found 

and these observations were thus removed from the dataset. 

 

Figure 11 Sampling steps of eDNA sampling. Left: Taking water subsample for mixed 

samples. Right: Filtering eDNA from mixed sample. 
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2.3.4.IV Telemetry 

As another metric potentially reflecting pike abundance between the sites, telemetry 

detections were recorded. Pike were tagged with acoustic transmitters (MM-R-16 50 HP 

& MM-R-16 33 HP, Lotek Wireless Inc., ON, Canada) between 2020 and 2022 within the 

project BODDENHECHT for the analysis of exchange movements and abundances. 

Details can be found in Dhellemmes et al. (2023a, b). The subset of pike tagged with 

acoustic transmitters and released within the comparison areas investigated in this study 

were unbalanced between the sites in two of the areas, total numbers per area and site 

are displayed in Table 5. 

Table 5 Numbers of pike tagged with acoustic telemetry transmitters between 2020 and 

2022 in the comparison areas, split up by the respective sites. In Werderbucht and 

Ummanz 100% of tagged pike originated from MPAs. 

 MPA OA 

Werderbucht 50 0 

Ummanz 28 0 

Sellin 4 4 

To record pike tagged pike, a hydrophone (VR-100, Oceans Research) was employed 

during drift angling to detect tagged fish in the study areas. Counts of individuals during 

one day were eventually summarized for each site to yield a telemetry abundance 

estimate for each site and fishing day. Since there was no systematic sampling of the 

sites but drifts were random (see section 2.3.3), not all fish might not have detected on 

each sampling day. However, given the random patterns of drift and the relatively large 

distance covered during most days (when wind was sufficient) it can be assumed that 

the number of unique detections was close to the number of tagged fish actually present. 

The minimum distance between transmitter and receiver necessary to successfully 

detect a fish is reduced at low water depth, high turbidity and high macrophyte cover 

which may have caused differences in detectability between sampling days. 

2.3.5 Processing of pike 

For both, pike from random angling and gillnetting, the following metrics were recorded: 

total length [mm], weight [g], sex (external determination, Casselmann 1974). In addition, 

tissue samples were taken from pectoral fins for genetic analysis, scale probes for aging 

and stomach contents using a stomach pump (this data is not part of the present thesis). 

For the gentle treatment of the animals, the sample collection took place in a designated 

measuring tray (Figure 12). After the handling procedure, pike were returned to the site 

of capture and released. 
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Figure 12 Processing of a large female pike. 

2.3.6 Aging 

To see whether growth differed between individuals as a function of site and gear, the 

size-corrected growth (Berggren et al. 2022) was calculated from scales. Scale samples 

were collected with pincers from a spot a few centimeters below the dorsal fin. 

Approximately 5-10 scales were gently removed from each fish during the handling 

procedure. From each fish, three scale were mounted onto a glass microscopic slide and 

a high-resolution photo was taken under a stereo-microscope (Leica MZ8). Images were 

subsequently imported into the software ImageJ2 (Version: 2.14.0) and transition points 

between yearly growth rings (annuli) from the core were identified visually and marked. 

To avoid sampling bias (e.g. as a result of increasing reader experience) the sequence 

of scales was randomized. Also, only one person was age reading the scales for 

consistency. After the software provided the data for absolute increment for each scale 

(i.e. the distance between the growth rings) the size-corrected growth was calculated 

from mean values of the three scales investigated. 

2.3.7 Camera transects 

To record pike behavior towards artificial lures of different kinds, camera-based lure 

trawling was conducted for 2 hours in each site and area per season. Two rods were 

employed simultaneously during trawling, each equipped with a Water Wolf - UW 2.0 

underwater camera and one of two lures (Figure 13, Figure 14). On one rod, a 20 cm 

Savage Gear Real Trout (hereafter termed rubber trout) in natural design was fished, 

which is a highly realistic representation of sea trout, a potential prey of pike. On the 
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other rod a bright yellow bucktail spinner (Mepps Giant Marabou) of the same length was 

fished, which is a rather unrealistic lure as it doesn’t imitate a specific prey but is highly 

conspicuous due to its distinct color and the emission of light reflexes, sound and the 

creation of acoustic vibrations. 

 

Figure 13 Lures used during camera trawling: Mepps Giant Marabou Bucktail Spinner in 

bright yellow (left) representing a highly conspicuous and unnatural lure versus the 

Savage Gear Real Trout in a natural design (right) convincingly mimicking a real prey. 

Lures were attached behind the cameras on a 30 cm steel leader. Since pike were 

expected to be startled when passed by a motorized boat in close proximity in the shallow 

waters, side planners were rigged on the line at approximately 3 m distance to make 

sure lures were kept at a distance from the boat (Figure 14). 

 

Figure 14 Schematic drawing of the setup used for lure trawling. 

Hooks were removed from lures to avoid entanglements with macrophytes. Pike 

encounters were categorized into the behavior “attack” and “follower”. An individual was 

only counted once, either as bite or as follower. If the same individual attacked a lure 

repeatedly, only one attack was considered. Analysis aimed at finding differences in 

behavioral responses of pike from each site towards the two lure types used. 
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2.4 Statistical analysis 

Plotting of results and statistical analysis was performed in R studio version 4.2.2. 

(R Core Team 2022). The packages involved in data analysis were dplyr (Wickham 

20216), lme4 (Bates et al. 2015), glmmTMB (Mollie et al. 2017), ggplot2 (Wickham et al. 

2016). Fixed model terms were reported via the Anova function of the car package which 

uses likelihood ratio tests to determine overall significance of individual variables (Fox & 

Weisberg 2019). The type argument specifying the sum of squares to be used in the 

Wald chi-square tests was set to 2 for models without (significant) interaction and to 3 

for models where the interaction was significant. Estimated marginal means and pairwise 

comparisons (Tukey HSD) were calculated using the emmeans package (Lenth et al. 

2023). To display estimated differences between levels of categorical variables, ratios 

are reported. These represent the proportional change. 

2.4.1 Catch rates of different gears between MPA and OA 

To assess potential differences in pike abundance between MPAs and OAs, the CPUE 

was analyzed for each of the gear types (angling, gillnets, telemetry) using generalized 

linear mixed effect models (GLMM) where the catch was used as response variable and 

site (MPA/OA) as main effect. Since it was expected, that the abundance differences 

between MPA and OA were a function of fishing pressure, which differed between the 

three comparison areas (see section 3.1.1), an interaction term between site and area 

was included to calculate the differences separately for each of the three areas. 

2.4.1.I Randomized angling 

Raw data from randomized angling sessions was used, where each observation 

(n = 726) corresponded to one fishing session (mean fishing effort per session = 1.3 h) 

of one sampler. The model formula was specified as: 

𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑓𝑖𝑠ℎ ~𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑒𝑓𝑓𝑜𝑟𝑡)) + 𝑠𝑖𝑡𝑒 ∗ 𝑎𝑟𝑒𝑎 + 𝑠𝑒𝑎𝑠𝑜𝑛 + (1|𝑠𝑎𝑚𝑝𝑙𝑒𝑟) + (1|𝑑𝑎𝑡𝑒)

+ (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

The interaction between site and area was included in the model to test whether the 

effect of protection was significantly moderated by the area. The season (factor, 3 levels, 

for a definition see section 2.3) was included as a fixed effect. The random terms for 

sampler and date were used to account for variation due to day and different skill among 

samplers while the random term “(1|area:site)” was incorporated in the model to account 

for the hierarchical spatial nesting structure of sites within areas and thereby avoid 

pseudoreplication. A poisson-conditional probability distribution (CPD) with a log-link 
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was deemed appropriate as the response data were counts. Model validation showed 

no significant violation of homoscedasticity and normally distributed residuals. 

2.4.1.II Gillnets 

To derive statistical measures for differences in gillnet catches between MPA and OA, a 

GLMM was used to explore the influence of the protection status on gillnet CPUE 

(pike/h*mnet length). The model formula was specified as 

𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑓𝑖𝑠ℎ ~𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑒𝑓𝑓𝑜𝑟𝑡)) + 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑛𝑒𝑡 − 𝑙𝑒𝑛𝑔𝑡ℎ)) + 𝑠𝑖𝑡𝑒 ∗ 𝑎𝑟𝑒𝑎

+ 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑛𝑒𝑡 − 𝑡𝑦𝑝𝑒 + (1|𝑑𝑎𝑡𝑒) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

In contrast to the equivalent model for angling, an offset term for the net length was 

included since the two net-types used differed in length. Net-type was included as a fixed 

variable in the model to be able to make separate predictions for each of the two since 

pike catchability differed between the two net-types. All other aspects of model 

specification and validation resembled the ones described in the previous section. 

2.4.1.III eDNA 

Modelling of eDNA data was intended but the data required the inclusion of a three-way 

interaction between site, season and area for correct predictions given the variability 

across seasons, sites and areas in the raw data. However, as the amount of data was 

insufficient for the required model complexity, the resulting model was strongly overfitted 

with infinitesimal confidence intervals high significance of all model terms. It was 

therefore opted against a modelling approach and instead only the raw data is presented. 

2.4.1.IV Telemetry 

To determine abundance estimates derived from telemetry records, telemetry counts per 

day were modelled using a generalized linear model (GLM). Since a three-way 

interaction between site, season and area was found to be not meaningful and the only 

significant two-way interaction was found between site and area, the following formula 

was applied: 

𝑐𝑜𝑢𝑛𝑡 ~ 𝑠𝑖𝑡𝑒 ∗ 𝑎𝑟𝑒𝑎 + 𝑠𝑒𝑎𝑠𝑜𝑛 

For model specification, a gaussian distribution with an identity link was chosen as 

response data were approximately normally distributed. Model verification confirmed a 

good fit of the CPD. 

2.4.1.V Full comparison angling dataset 

The analysis of catch rates in relation to the site was also performed with the larger 

dataset of both randomized and non-randomized angling events, where the total number 
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of observations (i.e. fishing sessions of individual anglers) was n = 1368. The model 

function was specified as: 

𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑓𝑖𝑠ℎ ~ 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑒𝑓𝑓𝑜𝑟𝑡)) + 𝑠𝑖𝑡𝑒 + 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑠𝑖𝑡𝑒 ∗ 𝑠𝑒𝑎𝑠𝑜𝑛

+ (1|𝑎𝑟𝑒𝑎) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) + (1|𝑑𝑎𝑡𝑒) + (1|𝑠𝑎𝑚𝑝𝑙𝑒𝑟) 

The variables of interest were the site and the season (meteorological scale) but also a 

possible interaction effect between the two, since an increase of magnitude in the effect 

of site across the seasons could be an indication for timidity due to ongoing fishing 

pressure in the OA areas leading to decreasing catches across the year while catches 

in the MPA might be more stable.  The random effects structure controlled for variation 

in the response variable due to different samplers, dates and areas with the random 

interaction term between area and site accounting for spatial nestedness. The specific 

comparison area was not considered as fixed effect, since the number of comparison 

areas was rather high (n = 9) and the dataset was unbalanced with some areas being 

subject to only very little sampling effort. The model was specified with a poisson CPD 

and a log-link. 

2.4.2 Evidence for timidity-induced effects on CPUE 

To determine whether beta estimates for the effect of site were significantly different 

between angling and angling-independent gears (hypothesis = greater decrease of slope 

in OA with angling when compared to other gears which potentially better reflect 

underlying abundance), three different gears were looked at which could explain pike 

abundance: Gillnet catches, eDNA concentrations and telemetry counts. Each of the 

three gears were compared with angling catches by building models including an 

interaction term between gears and site (Figure 15). 

 

Figure 15 Conceptual depiction of timidity as witnessed by a gear*site interaction. If the 

differences in catch rates between angling and angling-independent gears are purely 
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abundance driven, the slopes are expected to be similar between gears (left plot). 

However, if there is an additional timidity effect, the slope of angling is expected to be 

significantly steeper than that of angling-independent gears. 

Data preparation included appending the long-format data frames from angling and the 

respective angling-independent gear via the rbind() command. The response-variables 

of both gears were aligned in one column, as were all other variables relevant for the 

model. The column “gear” was created to differentiate between the two gears. For 

angling data, raw data were grouped by date, site and boat, yielding one summarized 

observation for each site and boat employed on the respective sampling day. This was 

necessary to avoid pseudoreplication as the data structure did not allow to include 

random effects for variables which were only contained in one of the gears (i.e. “sampler” 

was contained in angling data but not in gillnet data). 

To bring the ranges of the response variable of the two gears to the same scale, 

response data were normalized within each gear to obtain values between 0 and 1 by 

the following function:  

𝑌𝑖 − min (𝑌)

max(𝑌) − min( 𝑌)
 

To account for differences in effort, CPUE (catch/h) was used for angling- and gillnet 

data and concentration (µg/l) for eDNA. For telemetry, effort was not specifically recorded 

but lasted over the entire day for all data and was therefore not considered an important 

metric. GLMMs were then built using the glmmTMB package (Mollie et al. 2017). 

Following the residual analysis for model validation, parametric bootstrapping was 

applied on eDNA data to validate significances using confidence intervals. 

2.4.2.I Angling * Gillnets: 

Because gillnet catches of pike were extremely low in summer and autumn and were 

thus not deemed representative, only data from spring sampling was used for analysis. 

Data thus consisted of n = 32 observations (each observation representing one individual 

gillnet) for gillnets and n = 32 observations from angling (each observation representing 

a summarized angling day per boat and site). In accordance with the distribution of 

normalized data, a GLMM with a gaussian CPD was used and the following formula was 

specified: 

𝑐𝑜𝑢𝑛𝑡 ~ 𝑠𝑖𝑡𝑒 ∗ 𝑚𝑒𝑡ℎ𝑜𝑑 + (1|𝑑𝑎𝑡𝑒) + (1|𝑎𝑟𝑒𝑎) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

The random structure in the model accounts for variation between days and nesting in 

the data. 
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2.4.2.II Angling * eDNA: 

Because in 31 out of 108 eDNA mixed samples no pike DNA could be detected, these 

observations were removed from the data for the following analysis. Consequently, 

eDNA and angling data consisted of n = 67 observations (one observation per mixed 

sample) and of n = 110 observations (summarized by boat, day and site), respectively. 

A tweedie-CPD was deemed a good fit given that response data contained decimals 

numbers and 18% zeros.  The following formula was specified: 

𝑐𝑜𝑢𝑛𝑡 ~ 𝑠𝑖𝑡𝑒 ∗ 𝑚𝑒𝑡ℎ𝑜𝑑 + (1|𝑑𝑎𝑡𝑒) +  (1|𝑎𝑟𝑒𝑎) + (1|𝑠𝑒𝑎𝑠𝑜𝑛) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒)  

+  (1|𝑎𝑟𝑒𝑎: 𝑠𝑒𝑎𝑠𝑜𝑛)  + (1|𝑎𝑟𝑒𝑎: 𝑠𝑒𝑎𝑠𝑜𝑛: 𝑠𝑖𝑡𝑒) 

The random structure in the model accounts for variation among days and nesting in the 

data as well as a crossed structure between season and area where each season is 

contained in each area and vice versa. 

2.4.2.III Angling * Telemetry: 

On a total of 19 sampling dates, telemetry counts (individual fish) were recorded during 

angling from both sites of each area (n = 38 observations). These data were appended 

to the angling data of the respective sampling dates (n = 380 observations). Data were 

modelled with a GLMM with a gaussian CPD. The following formula was used for applied: 

𝑐𝑜𝑢𝑛𝑡 ~ 𝑠𝑖𝑡𝑒 ∗ 𝑚𝑒𝑡ℎ𝑜𝑑 + (1|𝑑𝑎𝑡𝑒) + (1|𝑎𝑟𝑒𝑎) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

2.4.3 Length and age 

To determine whether (1) larger or (2) older pike tended to be underrepresented in the 

OA angling sample but were found in OA gillnet catches, indicating active lure avoidance 

of these more experienced fish, the (1) length and (2) age of pike was assessed as a 

function of an interaction effect between site and gear. As in previous models, the nesting 

between site and area was used as random terms to avoid pseudoreplication of the 

variable site. Since data were approximately normally distributed, a gaussian CPD with 

an identity link function was used in the GLMM. The formula was specified as: 

(1) 𝑙𝑒𝑛𝑔𝑡ℎ ~ 𝑠𝑖𝑡𝑒 ∗ 𝑔𝑒𝑎𝑟 + 𝑎𝑟𝑒𝑎 + (1|𝑠𝑒𝑥) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

(2) 𝑎𝑔𝑒 ~ 𝑠𝑖𝑡𝑒 ∗ 𝑔𝑒𝑎𝑟 + 𝑎𝑟𝑒𝑎 + (1|𝑠𝑒𝑥) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

Since the dataset was not large enough to account for a potential three-way interaction 

between site, gear and season, the model was tested with the inclusion of a second 

interaction term between season with (a) gear and (b) site but found no significant 

indications that there was a relationship between them. 
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2.4.4 Growth 

To see whether growth differed between the pike captured with different gears between 

the sites, size-corrected growth data (where each individual contained one observation 

for the sum of life years -1) were analyzed. Differences in growth due to sex or age were 

accounted for by the inclusion of the random variables sex and lifeyear. To statistically 

account for the repeated measures within individuals, also the individual was used as a 

random effect in the model with the following formula: 

𝑔𝑟𝑜𝑤𝑡ℎ ~ 𝑠𝑖𝑡𝑒 ∗ 𝑔𝑒𝑎𝑟 + 𝑎𝑟𝑒𝑎 + (1|𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) + (1|𝑙𝑖𝑓𝑒𝑦𝑒𝑎𝑟) + (1|𝑠𝑒𝑥) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

The model was built with a gaussian CPD and an identity link function. 

2.4.5 Proportional stock density 

In order to evaluate how the protection status affected the size structure, the dataset 

from all comparison angling events (randomized and non-randomized) as well as the 

comparison gillnet fishing events where each row corresponded to one observation of a 

pike captured were analyzed. The concept of the proportional stock density (PSD), 

proposed by Wege & Anderson (1978) which is an index used to inform about the size 

structure of a population, was used. It is defined as: 

𝑃𝑆𝐷 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑠ℎ ≥ 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑠ℎ ≥ 𝑠𝑡𝑜𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ
∗ 100 

Suggestions for the two length measures contained in the formula were published by 

Gabelhouse (1984), where 53 cm was originally proposed as quality length for northern 

pike. However, since the pike stock of inference is known to be fast growing and 97% of 

all fish contained in the sample exceeded 53 cm, a threshold of 85 cm was defined for 

quality fish and 50 cm for stock length as this is the official minimum size limit and thus 

represents fish entering the fishery. 

Additionally, the probability of a fish being larger than quality length, i.e. 85 cm was 

modelled as a function of site while controlling for other variables potentially explaining 

this. The model formula was: 

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑓𝑖𝑠ℎ [1 − 0] ~  𝑠𝑖𝑡𝑒 + 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑠𝑒𝑥 +  (1|𝑎𝑟𝑒𝑎) +  (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

The model was specified with a binomial CPD since the response variable was binary. 

For this calculation only pike sampled with angling gear were used since data from gillnet 

fishing were highly unbalanced with respect to seasons. 

2.4.6 Attack rate 

To determine the probability of a pike following the lure vs. a pike attacking the lure 

between the sites, the number of followers and the number of attacks (bites + captured 



 2 Methods 

42 
 

fish) was summarized per day, boat and site from all angling data, yielding a total of 196 

observations. A logistic regression was applied to estimate the odds of an individual 

following the lure without attack vs. the individual attacking the lure. 

𝑐(𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟, 𝑎𝑡𝑡𝑎𝑐𝑘𝑠) ~ 𝑠𝑖𝑡𝑒 + (1|𝑑𝑎𝑡𝑒) + (1|𝑎𝑟𝑒𝑎) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

By using cbind(follower, attacks) as the response term, the model takes into account 

absolute numbers of the two variables which allows for increased statistical power over 

a ratio which does no longer contain information on absolute occurrences of the two 

events. Site was the only fixed variable in the model, as it was the only variable of 

interest. A random term for date was added to account for temporal autocorrelation. The 

two random effect terms area and area:site were incorporated in the model to account 

for spatial nestedness of the data where site was nested within each of the three 

comparison areas. For modelling, the glmer() function from the R-package lme4 package 

(Bates et al. 2015) was chosen which can handle the cbind() command in the response 

term. A binomial CPD was chosen to model the probability of one event occurring over 

the other. 

2.4.7 Landing rate 

To determine the probability of a fish being retained on the hook until capture upon 

attacking the lure, the number of fail bites (bites where pike were not successfully landed) 

and the number of landed pike was summarized per day, boat and site from all angling 

data. The same logistic regression as described in “Attack rate” was used, however, the 

random term for area was removed since the model showed singular fit when keeping 

all random terms from model 1. Using the likelihood-ratio test it was found that 

“(1|area:site)” was a significant improvement over the reduced model containing only the 

random date term, while (1|area) was not. The final model was: 

𝑐(𝑏𝑖𝑡𝑒𝑠, 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑓𝑖𝑠ℎ) ~ 𝑠𝑖𝑡𝑒 + (1|𝑑𝑎𝑡𝑒) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

All other steps were identical to the ones described in the previous section. 

2.4.8 Lure-effects on catchability 

2.4.8.I Lure Type (Observational) 

To compare the catchability of different lure types and assess the lure specific 

differences in catchability inside and outside of MPAs as a potential indicator of timidity 

(i.e. via lure specific attributes affecting the strength of stimuli emitted from each lure) 

the effect of lure type * site on the number of captured pike per session was modelled. 

The dataset used to explore lure effects consisted of n = 1483 observations, where each 

observation corresponded to one fishing session of one angler with a specific lure type. 
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Lure types were aggregated in two ways: In a first analysis lures were categorized 

according to their commercial differentiation into 6 levels (metal lures [spoons and 

spinners], crankbaits, jerkbaits, swimbaits, rubber lures and flies). In a second analysis 

lures were categorized into 2 levels using the categories “soft lures” (rubber lures, 

swimbaits and flies) and “hard lures” (metal lures, jerkbaits and crankbaits). In both 

analyses, data were unbalanced with regards to lure type. An interaction between lure 

type and site (categorical, 2 levels) was used as fixed effects since the main interest 

were differences in catch rates for each lure type depending on site. Raw data of fishing 

sessions were used as model input, where rows were individual fishing sessions per 

angler. A GLMM with a poisson CPD and a log-link was used to account for the nature 

of the response variable (count data). Fishing duration was used as an offset term in the 

model to account for differences in fishing effort between the sessions. To account for 

variation caused by sampler, fishing day, season or the comparison area these terms 

were used as random effects in the model and a random intercept was used for the 

interaction between area and site to account for spatial nestedness of the sites within 

areas. 

𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑓𝑖𝑠ℎ ~𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑒𝑓𝑓𝑜𝑟𝑡)) +  𝑙𝑢𝑟𝑒𝑡𝑦𝑝𝑒 ∗ 𝑠𝑖𝑡𝑒 + (1|𝑠𝑎𝑚𝑝𝑙𝑒𝑟) + (1|𝑑𝑎𝑡𝑒)

+ (1|𝑠𝑒𝑎𝑠𝑜𝑛) + (1|𝑎𝑟𝑒𝑎) + (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

The model was checked for normality of residuals, homogeneity and overdispersion and 

was validated in all of these aspects. To minimize the risk of type-1 errors, a Benjamini 

& Hochberg correction of p-values was used when assessing individual differences 

between catch rates for each lure between MPA and OA. 

2.4.8.II Lure Color (Observational) 

To see whether lure color was affecting CPUE, lure color was assigned one of two 

categories by judging the color profile of the lure, where bright and colorful lures were 

assigned “shock” and more natural color profiles were assigned “natural”. The same 

dataset as described in the previous section was used. The effect of lure color on catch 

rate was then tested in the same GLMM as described in the previous section 

(1| Lure Type), but where lure type was replaced by lure color while all other terms were 

held constant. Also, for model validation and derivation of statistical significance the 

same steps as described previously were undertaken. 

2.4.8.III Lure Color (Experimental) 

To find whether bright (unnatural) colors were a disadvantage when fishing for pike in 

OA areas as a further indication for timidity, an experimental fishing design was pursued 

during randomized comparison angling. For this, standardized lures (Savage Gear Real 
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Trout, 20 cm) were fished in two distinct color patters (rainbow trout vs. firetiger, Figure 

16). It was expected that the natural design would catch more fish in the OA due to fish 

potentially being more cautious towards unnatural colors while there would be no such 

difference or even the reversed trend in the MPA. Each color was fished at least once in 

each site per fishing day. The sequence was randomized to control for daytime effects. 

On a total of 23 sampling days at least one angler fished this according to this design. If 

two anglers followed the design on the same day, both colors were fished 

simultaneously. The data consisted of 156 observations (i.e. individual angling sessions). 

To analyze whether the catch rates of the two colors differed systematically between the 

sites, the same GLMM as in the previous section was applied (interaction effect between 

color and site). 

 

Figure 16 Lures from standardized color comparison. Aggressive firetiger (left) and 

natural rainbow trout design (right). 

2.4.9 Probability of zero catch 

To model the probability of a fishing session without fish contact (i.e. where pike are 

neither captured, nor registered as bites), raw data from all comparison angling sessions 

(randomized & non-randomized) were used, where each observation (n = 1368) 

represented one fishing session of an angler. A binary column categorizing fishing 

sessions into one of two groups (0 = fish contact; 1 = fish contact) was modelled as the 

response variable in a GLMM (glmer function of the lme4 package).  Site (categorical, 

2 levels), season (categorical; 4 levels, according to astronomical cycle) and the 

interaction effect between them were used as the fixed model terms. A potential 

interaction effect between site and area was not accounted for since data for different 

areas were highly unbalanced with some areas only having very few observations. 

Random terms included the date, the combination of date and boat (since it was 

expected that fishing success varied between the boats on each fishing day), the area 

and the area:site to account for spatial nestedness, yielding the formula: 

𝑛𝑜 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 [1 − 0] ~ 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑒𝑓𝑓𝑜𝑟𝑡)) + 𝑠𝑖𝑡𝑒 + 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑠𝑖𝑡𝑒: 𝑠𝑒𝑎𝑠𝑜𝑛 + (1|𝑠𝑎𝑚𝑝𝑙𝑒𝑟)

+ (1|𝑑𝑎𝑡𝑒) + (1|𝑑𝑎𝑡𝑒: 𝑏𝑜𝑎𝑡) + (1|𝑎𝑟𝑒𝑎) +  (1|𝑎𝑟𝑒𝑎: 𝑠𝑖𝑡𝑒) 

Given the binomial nature of the response variable, a binomial CPD was used in the 

model. 
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2.4.10 Analysis of recapture data 

In addition to the data collected during fieldwork, a dataset of recaptured pike from the 

BODDENHECHT project was analyzed. A total of 672 fish were recaptured with angling- 

or commercial gear, which provided an opportunity to investigate recapture specific 

patterns that may reveal indications for lure timidity. 

2.4.10.I Recapture gear 

To test whether pike with a prior lure experience were more likely to be recaptured with 

commercial gears than angling as a potential indication for lure avoidance, a binary 

response variable was created indicating whether a fish with a recapture history was 

recaptured with commercial gears. Similarly, a binary explanatory variable was created, 

indicating whether a fish was caught with lures at the first capture. The effect of the gear 

at first capture on the gear at the recapture event was tested. Due to the binary nature 

of the response variable a binomial CPD was used. 

𝑟𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 [1 − 0] ~ 𝑓𝑖𝑟𝑠𝑡𝑐𝑎𝑡𝑐ℎ_𝑙𝑢𝑟𝑒[1 − 0] 

2.4.10.II Time to recapture 

It was tested whether the duration between the first and the second capture event of 

recaptured pike was gear specific in a way that fish which had a prior experience with 

lures were potentially unavailable for a second capture with lures for extended periods 

while a recapture with commercial gears (e.g. gillnets / fyke-nets) was more likely within 

shorter timespans upon their first capture for these individuals. For this analysis all 

recaptures were categorized with the gear sequence they were captured with (i.e. 

Angling-Angling; Commercial-Angling and so forth) with respect to their previous and 

their current capture event. In addition, the duration (number of days) between the two 

capture events was calculated. Statistical inference was drawn with a Kruskal-Wallis test 

to see whether the median duration between capture events differed between the gear 

sequences assigned to each recapture, because data followed no specific distribution. 

2.4.10.III Recapture Probability between Sites 

To test whether the probability of recapturing an individual was lower in areas subject to 

regular fishing pressure (OA) than in sites that experienced extended periods without 

exposure to angling gear (i.e. the MPAs sampled throughout the MPA comparison 

angling events), data from both comparison angling events as well as capture data from 

guides who marked fish as part of the project in OA sites were used. The dataset 

comprised 1672 pike. A binomial model with the formula was used: 

𝑟𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒[1 − 0] ~ 𝑠𝑖𝑡𝑒 
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3 Results 

3.1 Descriptives 

3.1.1 Observed fishing effort 

Angling pressure was observed in all OA sites, averaging 0.6 boats per day for 

Werderbucht and Ummanz and 0.9 boats per day in Sellin. In the MPAs of Werderbucht 

and Ummanz, no anglers were observed on any of the sampling days while mean angling 

effort was 0.4 angling boats per day in the MPA of Sellin (Figure 17). Commercial gears 

were found in all MPAs. Lowest commercial fishing effort was found in Werderbucht 

where only eel traps were observed. In Ummanz, higher levels of commercial fishing 

pressure were observed inside the MPA (eel traps and gill nets), even exceeding levels 

in the OA. In Sellin, there was higher commercial fishing effort with eel traps inside the 

MPA while gillnet effort was twice as high in the OA. Results are shown in Figure 17. 

 

Figure 17 Observed fishing effort in the 3 comparison areas (horizontal panels) per site 

(x-axis). Columns show the sum of observations per category across all sampling days. 

Mean daily values are displayed by black points. Numbers for daily mean ± SD are shown 

as text within each facet. Data were recorded between April 2022 and January 2023. 

3.1.2 Angling catches 

During 59 days of comparison angling between MPA and OA, a total of 464 pike were 

captured. 80% of pike were captured within MPAs. Mean CPUE was around 4 times 
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higher inside MPAs compared to OAs (Table 6). Fishing effort required to capture a large 

pike > 1 m total length (TL) was 7-fold higher in the OA than in the MPA during 

randomized angling and 20-fold higher during non-randomized angling (Table 6). A full 

summary is provided in Table 6. 

Table 6 Angling effort and respective catch-related summaries from both randomized 

and non-randomized sampling events. 

Angling type Randomized angling Non-randomized angling 

No. of sampling days 40 19 

No. of samplers / day 4.6 ± 1.4 [mean ± SD] 6.0 ± 3.0 [mean ± SD] 

No. of boats / sampl. day 1.4 ± 0.5 [mean ± SD] 1.6 ± 0.9 [mean ± SD] 

No. of anglers per boat 3.5 ± 0.6 [mean ± SD] 3.9 ± 1.0 [mean ± SD] 

∑ effort (h * sampler) 964 800 

No. of comparison areas 3 8 

Site MPA OA MPA OA 

Pike [n / share] 212 / 80% 54 / 20% 160 / 81% 38 / 19% 

Pike > 1 m TL [n] 7 1 21 1 

Mean CPUE  

(pike / h) ± SD 

0.439 ± 

0.306 

0.112 ± 

0.132 

0.388 ± 

0.384 

0.098 ± 

0.210 

Mean CPUE  

(pike > 1 m TL / h) ± SD 

0.015 ± 

0.038 

0.002 ± 

0.013 

0.051 ± 

0.100 

0.003 ± 

0.001 

Effort (h) per pike > 1 m TL    68.6 481.3 19.6 387.9 

During randomized angling, a total of 266 pike were captured. Highest mean CPUE was 

found in Werderbucht (MPA), followed by Ummanz (MPA) and Sellin (MPA). Differences 

in mean CPUE between the sites were most pronounced in Ummanz, where mean 

CPUE was about 6.5 time higher inside the MPA compared to the OA, while this figure 

was 4.2 in Werderbucht and only 2.1 in Sellin. A summary can be found in Table 7. 

Table 7 Catch statistics from randomized comparison angling for each comparison area. 

Area Site 
Pike [n / share 

within area] 

Mean CPUE 

(pike / h) ± SD 

Mean 

CPUE ratio 

n pike 

TL > 1 m 

Werderbucht 
MPA 96 / 81% 0.478 ± 0.691 

4.2 
2 

OA 22 / 19% 0.113 ± 0.318 1 

Ummanz 
MPA 64 / 88% 0.423 ± 0.652 

6.5 
5 

OA 9 / 12% 0.065 ± 0.232 0 

Sellin 
MPA 52 / 69% 0.383 ± 0.648 

2.1 
0 

OA 23 / 31% 0.182 ± 0.416 0 
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3.1.3 Gillnet catches 

Overall, 126 pike were captured during gillnet samplings, 106 (84%) thereof with specific 

pike gillnets and 20 (16%) with gillnets used to sample the preyfish communities. Strong 

seasonality was evident in catch rates with 90.5% (n = 114) of all pike captured during 

spring samplings. Across all seasons, the number of pike captured in Sellin, Ummanz 

and Werderbucht was 36, 45 and 45, respectively. The ratios of mean gillnet CPUE 

between MPA and OA sites were 2.5 for Werderbucht and 1.5 for Ummanz and Sellin 

across seasons. Across all areas and seasons, gillnet CPUE was 1.68 times higher 

inside MPAs. An enumeration of gillnet catches is provided in Table 8. 

Table 8 Overview of gillnet pike catches across all seasons, areas and sites. 

Season Area Site 
n pike from 

pike 
gillnets 

n pike from 
preyfish 
gillnets 

n pike 
total 

share from 
MPA [%] 

(mean ratio) 

Spring 

Werderbucht MPA 26 5 31 
74 (2.81) 

OA 10 1 11 

Ummanz MPA 22 2 24 
60 (1.5) 

OA 14 2 16 

Sellin MPA 14 4 18 
56 (1.29) 

OA 9 5 14 

𝛴 Spring 114 64 (1.78) 

Summer 

Werderbucht MPA 0 0 0 
0 (-) 

OA 1 0 1 

Ummanz MPA 0 1 1 
50 (1) 

OA 1 0 1 

Sellin MPA 0 0 0 
- 

OA 0 0 0 

𝛴 Summer 3 33 (0.5) 

Autumn 

Werderbucht MPA 1 0 1 
50 (1) 

OA 1 0 1 

Ummanz MPA 2 0 2 
66 (2) 

OA 1 0 1 

Sellin MPA 2 0 2 
50 (1) 

OA 2 0 2 

𝛴 Autumn 9 56 (1.25) 

𝛴 Total 126 63 (1.68) 

3.1.4 eDNA 

Summarized across seasons and areas, eDNA concentrations were 4.21 ± 7.43 

copies / μL (mean ± SD) for MPAs and 2.92 ± 3.64 copies / μL (mean ± SD) for OAs, 

indicating 1.4 times higher concentrations in MPAs. However, there was pronounced 
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season variation in eDNA concentrations with highest values measured in spring while 

for most sites the levels were low throughout summer and autumn (Figure 18, Table 9). 

When looking at the different comparison areas, the seasonal trend was particularly 

pronounced in Ummanz while in Sellin higher values were detected also in summer and 

autumn (Figure 18). No area showed consistently higher concentrations in one of the 

sites across seasons. The share of samples with no detectable levels of pike DNA was 

highest in summer (Table 9).  

 

Figure 18 Raw data of eDNA concentrations (copies / μL) for the three comparison areas 

(color) and their sites (x-axis) across the three seasons (panels). Black dots represent 

mixed samples, distribution is emphasized by boxplots. Diamonds display mean values. 

Table 9 Measured eDNA concentrations across all seasons, areas and sites. 

Season Area Site 
Mean ± SD 

[copies / μL] 

Range 

[copies / μL] 

Share zeros 

[%] 

Spring 

Werderbucht 
MPA 6.36 ± 5.35 0.8 - 13.1 0 

OA 2.19 ± 1.53 0 - 3.6 20 

Ummanz 
MPA 19.38 ± 13.01 3.7 - 36.7 0 

OA 8.62 ± 5.56 2.2 - 14.8 0 

Sellin 
MPA 2.77 ± 2.91 0 - 6.1 40 

OA 3.08 ± 2.5 0.9 - 6.1 0 

Summer 

Werderbucht 
MPA 0.9 ± 0.97 0.3 - 2.6 0 

OA 1.2 ± 1.5 0 - 3.7 20 

Ummanz 
MPA 0 ± 0 0 - 0 100 

OA 0.13 ± 0.23 0 - 0.4 66 

Sellin 
MPA 2.33 ± 2.33 0 - 5.1 40 

OA 3.98 ± 3.77 0.5 - 8.9 0 

Autumn 

Werderbucht 
MPA 0.36 ± 0.54 0 - 1.2 60 

OA 1.12 ± 1.61 0.2 - 3 0 

Ummanz 
MPA 0.58 ± 0.36 0.2 - 1.1 0 

OA 2.16 ± 3.52 0.2 - 7.4 0 

Sellin 
MPA 5.16 ± 4.71 0.2 - 12.8 0 

OA 1.58 ± 0.54 1.2 - 2.4 0 
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3.1.5 Telemetry 

In all areas, the number of pike detected per day was higher in the MPA sites. The 

difference between MPA and OA was most pronounced in Werderbucht, where 87% of 

mean daily counts were detected inside MPAs while his figure was 74% and 70% for 

Ummanz and Sellin, respectively. Details are provided in Table 10. 

Table 10 Daily telemetry counts of pike individuals from the three comparison areas. 

Area MPA [mean ± SD / range] OA [mean ± SD / range] Mean ratio 

Werderbucht 7.2 ± 1.6 / 5 - 9 1.1 ± 1.1 / 0 - 3 6.5 

Ummanz 2.8 ± 0.8 / 2 - 4 1 ± 1.2 / 0 - 3 2.8 

Sellin 2.8 ± 1.4 / 1 - 5 1.2 ± 0.7 / 0 - 2 2.3 

3.1.6 Camera transects 

From over 40 hours of video material, 7 lure attacks of pike were identified, thereof 4 on 

the bucktail spinner and 3 on the rubber trout (Table 11, Figure 19). In addition, 5 

individuals were found to only follow the lures without an attack (bucktail spinner: n = 4, 

rubber trout: n = 1). Moreover, several pike were mainly interested in the lure camera 

(attacks: n = 5, follower: n = 1). The overall low numbers of pike interactions did not allow 

for statistical tests. However, the bucktail spinner yielded an equal number of followers 

and attacks in both sites (MPA: n = 3, OA: n = 1) while the rubber trout was attacked 

more vigorously in the MPA (attack rate = 100%, n = 2) compared to the OA (attack 

rate = 50%, n = 2). However, if all pike interactions (including interactions with the 

camera) were considered, the bucktail spinner yielded markedly higher attention in the 

MPAs (n = 12) compared to the trout (n = 2), while there was no such difference in the 

OAs (n = 2 for each lure). All interactions with the lure camera were found in the setup 

with the bucktail spinner within the MPA. The overall number pike individuals detected in 

the camera footage was 3.5 times higher in MPAs compared to OAs. Results are 

displayed in Table 11. 

Table 11 Total numbers of pike attacks and followers from lure camera trawling for each 

site and lure. BS: Bucktail Spinner; RT: Rubber Trout. 

Site Lure 
∑ Lure 

attack 

∑ Lure 

follower 

∑ Camera 

attack 

∑ Camera 

follower 

∑ 

Interactions 

Attack 

Rate 

MPA BS 3 3 5 1 12 25% 

MPA RT 2 0 0 0 2 100% 

OA BS 1 1 0 0 2 50% 

OA RT 1 1 0 0 2 50% 
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Figure 19 Footage from lure camera trawling. (a) A pike following the bucktail spinner. 

(b) A large individual attacking the rubber trout. (c) A pike with greater interest in the 

camera than in the bucktail spinner. (d) Seasonal differences in visibility and macrophyte 

entanglement contributed negatively to identification of pike in the video material. 

3.2 Statistical analysis 

3.2.1 Catch rates of different gears between MPA and OA 

3.2.1.I Randomized Angling 

Pike angling CPUE (pike / h * angler) differed significantly between the sites (χ2 = 11.3, 

df = 1, p < 0.001), where mean values were 0.434 ± 0.666 (mean ± SD) for the MPA and 

0.117 ± 0.329 for the OA. Similarly, the season had a significant effect on catch rates 

(χ2 = 7.45, df = 2, p = 0.024). Values were 0.261 ± 0.479 (mean ± SD) for spring, 

0.383 ± 0.654 for summer and 0.198 ± 0.488 for autumn. A post-hoc test revealed that 

the significance of the variable season was driven by the significantly higher catches in 

summer when compared to autumn (emmeans, ratio = 1.978 ± 0.496 SE, p = 0.018), 

while the other seasons did not differ significantly from each other. There was no 

significant difference in CPUE between the three areas (χ2 = 1.53, df = 2, p = 0.465), 

however, the interaction effect between site and area was significant (χ2 = 7.31, df = 2, 

p = 0.026). This indicates that the differences in catches between OA and MPA had 

different magnitudes across the areas. This difference was lowest in Sellin where 

catches were over two-fold higher in the MPA (emmeans, ratio = 2.319 ± 0.581 SE, 

p < 0.001) but more than 4-fold higher in Ummanz (emmeans, ratio = 4.364 ± 1.031 SE, 
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p < 0.001) and over 7-fold higher in Werderbucht (emmeans, ratio = 7.103 ± 2.529 SE, 

p < 0.001). The model R2 was 0.26, indicating that the fixed model components explained 

26% of the variation in catches. Model results and raw data are displayed in Figure 20. 

 

Figure 20 Raw (top row) and predicted (bottom row) CPUE (pike/h) from randomized 

angling sessions for each area (color) and site (x-axis) across the three sampling 

seasons (vertical panels). Distribution of raw data is emphasized by violin plots with 

mean values represented by diamonds. 

3.2.1.II Gillnets 

Gillnet CPUE (pike / 100 m net * 12 h) was on average (mean ± SD) 0.591 ± 1.384 in the 

MPA and 0.313 ± 0.694 in the OA sites when averaging over areas, seasons and net 

types and this effect was significant (χ2 = 12.5, df = 1, p < 0.001). Catches did not 

significantly differ between the areas (χ2 = 2.88, df = 2, p = 0.237) and neither was the 

interaction effect between site and area significant (χ2 = 0.39, df = 2, p = 0.821), 

indicating that the magnitude of CPUE differences between MPA and OA was not 

strongly modified by the area. There was a pronounced seasonal effect on gillnet CPUE 

(χ2 = 91.8, df = 2, p < 0.001) with significantly higher CPUE (mean ± SD) in spring 
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(1.242 ± 1.632) when compared to summer (0.042 ± 0.2) (emmeans, ratio = 31.678 ± 

18.536 SE, p < 0.001) and autumn (0.089 ± 0.237) (emmeans, ratio = 14.951 ± 5.186 

SE, p < 0.001), Figure 21. However, CPUE did not significantly differ between summer 

and autumn (emmeans, ratio = 0.472 ± 0.315 SE, p = 0.498). 

 

Figure 21 Raw (top row) and predicted (bottom row) gillnet CPUE (pike / 100 m net * 

12 h) from gillnet sampling for each area (color) and site (x-axis) across the three 

sampling seasons. Distribution of raw data is emphasized by violin plots with mean 

values represented by diamonds. Shape of raw data points denotes the respective net-

type. 

In spring, when gillnet catches were highest, CPUE (mean ± SD) was 1.694 ± 2.025 in 

the MPA and 0.817 ± 1.002 in the OA. As expected, CPUE was significantly affected by 

the net type (χ2 = 13.3, df = 1, p < 0.001) where mean CPUE ± SD was 0.779 ± 1.451 

for the pike nets and 0.134 ± 0.369 for the preyfish nets. The fixed model components 

explained 29% of the variation in gillnet catches (marginal R2 = 0.29). Raw data and 

model predictions are displayed in Figure 21. 
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3.2.1.III Telemetry 

The number of detected pike per day was on average (mean ± SD) 4.5 ± 2.6 individuals 

for the MPA and 1.1 ± 1 for the OA and the site effect was significant in predicting the 

number of detected pike (χ2 = 107, df = 1, p < 0.001). The season did not significantly 

affect the number of detections (χ2 = 6.05, df = 3, p = 0.109). The effect of area was 

significant (χ2 = 41.8, df = 2, p < 0.001) but must be interpreted with caution due to the 

significant interaction effect between site and area (χ2 = 46.5, df = 2, p < 0.001), 

indicating that the difference in measured abundances between OA and MPA varied with 

the area. In Werderbucht this difference was most pronounced with over 6-fold higher 

detections in the MPA compared to the OA (emmeans, ratio = 6.125 ± 0.521 SE, 

p < 0.001) while this difference was less pronounced for Ummanz (emmeans, ratio = 1.8 

± 0.659 SE, p 0.01) and Sellin (emmeans, ratio = 1.5 ± 0.521 SE, p 0.007). Trends are 

also displayed in Figure 22. 

 

Figure 22 Raw data (top row) and predicted values (bottom row) for telemetry counts. 

Each black dot in the raw data represents the number of detected pike on one sampling 

day. Boxplots (median, box: 25 and 75 percentile, whisker: 10 and 90 percentile) 

emphasize the distribution of measurements per site and area, diamonds represent 

mean values. 
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3.2.1.IV Full Comparison Angling Dataset 

The model suggested that there was no significant interaction between the site and the 

season (χ2 = 4.15, df = 3, p = 0.246), meaning that the difference in catch rates between 

OA and MPA was unrelated to the season. The differences in catch rates between the 

sites were significant (χ2 = 39.9, df = 1, p < 0.001), where CPUE (pike / h) per angler 

was 0.409 ± 0.655 (mean ± SD) for the MPA and 0.102 ± 0.304 (mean ± SD) for the OA. 

Likewise, the season was significantly affecting catch rates (χ2 = 12.3, df = 3, p = 0.007). 

Overall CPUE (pike / h * sampler) [mean ± SD] was highest in summer (0.374 ± 0.639) 

followed by spring (0.322 ± 0.61) and autumn (0.189 ± 0.456) while the lowest mean 

CPUE was found in winter (0.222 ± 0.461). A post-hoc comparison revealed that 

significant differences existed between spring and winter (emmeans, ratio = 3.239 ± 

1.217 SE, p = 0.009), summer and winter (emmeans, ratio = 3.748 ± 1.423 SE, 

p = 0.003) and summer and autumn (emmeans, ratio = 1.877 ± 0.455 SE, p = 0.047). 

Raw data and predictions of CPUE per site and season are shown in Figure 23. 

 

Figure 23 CPUE of pike (pike/h) between MPA and OA from both randomized and non-

randomized angling samplings. The upper panel displays raw data, each point 
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representing one individual angling session from one sampler. Violin plots emphasize 

distribution of raw data, diamonds display mean values. The lower panel displays model 

predictions. Colors represent seasons, sites are separated along the x-axis. 

3.2.2 Body length, age and growth 

In pooled data from all comparison samplings (randomized-, non-randomized angling 

and gillnets) total length (TL) ranged from 35 to 121 cm (mean ± SD = 80.8 ± 12.7 cm) 

in the MPA and from 50 to 109.6 cm (mean ± SD = 76.6 ± 11 cm) in the OA. During all 

angling samplings, 30 pike with TL > 1 m were captured, 28 (93%) thereof in the MPA. 

Size distributions of pike from randomized angling and gill-netting in the three 

comparison areas are presented in Figure 24. Seasonal and gear-related differences in 

length distributions of pike from all comparison samplings are presented in Figure 25.  

 

Figure 24 Density plot of total lengths of pike captured with gillnets and during 

randomized angling in the three comparison areas (horizontal panels) between April 

2022 and January 2023. Color denotes the site of capture; vertical dotted lines represent 

mean values. 



 3 Results 

57 
 

 

Figure 25 Density plot of the body lengths of pike captured during MPA comparison 

sampling split up by season (y-axis), gear (horizontal panels) and site (vertical panels). 

Percentages on the left-hand sides of each plot display the share of females in the catch. 

Respective sample sizes are denoted on the right-hand-side of each plot, emphasized 

by shade with higher sample sizes represented by darker color. Angling data contain fish 

from both randomized and non-randomized samplings conducted between 2021 - 2023. 

3.2.2.I Modelling length 

The average body length of pike captured during randomized angling and gill-netting did 

not differ significantly (χ2 = 0.1, df = 1, p = 0.748) between the sites (mean TL ± SD: 

MPA = 771.1 ± 120.7 mm, OA = 760.8 ± 95.8 mm). Similarly, there were no significant 

differences in pike body length between pike captured with different gears individuals 

captured with different gears (χ2 = 0.88, df = 1, p = 0.348) (mean TL ± SD: 

gillnets = 755.8 ± 89.5 mm, angling = 774.3 ± 124.4 mm). The interaction effect between 

site and gear was not significant (χ2 = 0.23, df = 1, p = 0.631), indicating that neither of 

the gear types captured differently sized individuals in any of the sites (Figure 26). 

However, pike length differed significantly between the areas (χ2 = 18.4, df = 2, 

p < 0.001). Pike from Sellin were on average 701.1 ± 123.6 mm (mean ± SD) long and 

were significantly smaller than pike from Ummanz (p = 0.003) with an average length of 

811.9 ± 112.7 mm but also significantly smaller than pike from Werderbucht (p < 0.001), 

which had an average length of 783.5 ± 86.0 mm. Raw data and model predictions for 

the three comparison areas are displayed in Figure 26. Means of raw data for each area, 

site and gear can be found in Appendix 2. 



 3 Results 

58 
 

 

Figure 26 Raw (left) and predicted data ± SE (right) on total body length (mm) of pike 

captured with different gears (color) between the sites (x-axis) in the three comparison 

areas (horizontal panels). Left: black dots represent individuals, boxplots emphasize the 

distribution. Diamonds show mean values. 

3.2.2.II Modelling age 

Pike age was significantly related to the site (χ2 = 9.4, df = 1, p = 0.002). Pike from the 

MPA had an average age of 4.98 ± 1.92 (mean ± SD) years, pike from the OA 4.29 ± 2.01 

years. There was no significant relationship between individuals captured with different 

gears (χ2 = 0.19, df = 1, p = 0.66). Mean age ± SD was 4.63 ± 1.96 years for pike 

captured with angling and 5.04 ± 1.96 years for pike captured with gillnets. The 

interaction effect between site and gear was significant (χ2 = 6.96, df = 1, p = 0.008) in 

a way that pike age between the sites did not significantly differ (emmeans, estimate = 

0.111 ± 0.465 SE, p = 0.811) when comparing pike captured with gillnets (mean 

age ± SD: MPA = 5.1 ± 1.9 years, OA =  4.9 ± 2.1 years) while pike captured with angling 

were significantly younger in the OA (mean age ± SD: OA = 3.6 ± 1.7 years, 

MPA = 4.9 ± 1.9 years) (emmeans, ratio = 1.462 ± 0.477 SE, p = 0.002), Figure 27. 

There was variation in the average age of pike from the three areas (mean age ± SD: 

Werderbucht = 5.0 ± 1.4 years, Ummanz = 5.4 ± 2.1 years, Sellin = 4.0 ± 2.3 years) but 

the area effect was not significant (χ2 = 4.8, df = 2, p = 0.091). Raw data and predictions 
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are displayed in Figure 27, means of raw data per area, site and gear can be found in 

Appendix 3. 

 

Figure 27 Raw data (left) and predictions (right) of pike age (years) from individuals 

captured with different gears (color) in the two sites (x-axis) in the three comparison 

areas (horizontal panels). Black dots in left panels represent individuals, distribution of 

the data is emphasized by boxplots. Diamonds display mean values. Predicted 

means ± SE are connected by lines to emphasize the significant (p < 0.01) interaction 

between site and gear. Note that ages between MPA and OA are approximately identical 

for gillnets (blue) in all comparison areas but markedly lower for fish angled in OA when 

compared to the MPA. 

3.2.2.III Modelling growth 

Size corrected growth was significantly associated with the site (χ2 = 10.7, df = 1, 

p = 0.001). Pike from the MPA were found to have an average size corrected growth of 

434.7 ± 57.1 mm (mean ± SD) while the same figure was 453.6 ± 56.1 mm for pike from 

the OA. The gear was not significantly related to size corrected growth (χ2 = 0.38, df = 

1, p = 0.538). Mean values were 442.8 ± 61 mm for pike captured with angling and 435.5 

± 51.2 mm for pike captured with gillnets. There was a significant interaction effect 

between the site and gear (χ2 = 3.81, df = 1, p = 0.051), suggesting that differences in 
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growth between the sites were gear-dependent. While pike growth did not significantly 

differ between the sites for individuals captured with gillnets (emmeans, estimate = -

4.563 ± 9.012 SE, p = 0.613) where average growth (mean ± SD) was 434.7 ± 53.7 mm 

for the MPA and 436.9 ± 47.4 mm for the OA, fish captured with angling were significantly 

faster growing in the OA (473.5 ± 59.8 mm) than in the MPA (434.8 ± 59 mm), 

(emmeans, estimate = 29.605 ± 9.052 SE, p = 0.001), Figure 28. Pike growth did not 

significantly differ between the areas (χ2 = 1.02, df = 2, p = 0.601). Average values were 

445.5 ± 78.2 mm for Sellin, 441.7 ± 51.7 mm for Ummanz and 435.5 ± 44.6 mm for 

Werderbucht (mean ± SD). Raw data and predictions are displayed Figure 28, means of 

raw data per area, site and gear can be found in Appendix 4. 

 

Figure 28 Raw data (left) and predictions (right) of size-corrected growth of pike from the 

three different areas (horizontal panels). Raw data is displayed by black dots, size 

indicates age at capture. Boxplots emphasize the distribution of raw data, diamonds 

indicate mean values. Predicted means ± SE are connected by lines to emphasize the 

interaction between site and gear. 

3.2.2.IV Proportional Stock Density 

When pooling pike from all sampling gears, the proportional stock density index was 1.5 

times higher in the MPA (PSD [n]: MPA = 37 [534], OA = 22 [146]), indicating a higher 
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proportion of “quality fish” (> 85 cm total length) compared to the OA (Figure 29). As 

expected, there was also a higher share of female pike in the catch from the MPA as 

females grow to larger sizes (share females: MPA = 55%, OA = 46%; Figure 29). In 

addition, the PSD was found to vary with gear, with higher values found for angling 

(PSD = 31, n = 174, share females = 52%) than for gillnets (PSD = 12, n = 111, share 

females = 27%) when only catches from spring were compared in order to control for 

seasonal variation given the imbalance in the data with respect to sampling gear. There 

were also indications for seasonal trends in the share of quality fish with higher values 

found in winter (Figure 29).  

 

Figure 29 Bar plots displaying calculated proportional stock densities for the MPA (green) 

and OA (blue). Colored numbers inside the panels show the calculated PSD for each 

bar, black percentages display the respective share of female pike in the sample. 

Numbers at the lower margins of each panel denote respective sample sizes available 

for the calculations. On the left (a) data is split up by season (x-axis) and gear (horizontal 

panels), plot (b) displays pooled data from all gears and across seasons. 

When only considering pike from randomized angling and gill-netting efforts in the three 

comparison areas, PSD was found to be almost two times higher in the MPAs of 

Ummanz and Sellin compared to OA sites while in Werderbucht the share of quality fish 

was slightly higher in the OA (Table 12). 
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Table 12 Proportional stock densities for each comparison area and site. Data contains 

all pike from gill-netting and randomized angling. 

Area MPA 

PSD (n) / share females 

OA 

PSD (n) / share females 
Mean ratio 

Werderbucht 22 (123) / 32% 25 (36) / 36% 0.88 

Ummanz 42 (91) / 63% 23 (26) / 54% 1.82 

Sellin 14 (71) / 52%   8 (39) / 31% 1.75 
 

The results of the binomial model showed that the probability of capturing a quality fish 

was not significantly influenced by the site (χ2 = 2.39, df = 1, p = 0.122) when controlling 

for area, seasonal and sex effects. Despite the lack of statistical significance, the 

probability of a female pike being a quality fish (i.e. > 85 cm) was estimated with 73% in 

the MPA and 61% in the OA. Similarly, for male pike the probability of having a total 

length > 85 cm was almost doubled for individuals from the MPA despite overall low 

probabilities (1% and 0.6% for fish from the MPA and OA, respectively). Sex was a highly 

significant predictor of quality fish (χ2 = 56.5, df = 1, p < 0.001) as could be expected 

given the sexual dimorphism of the species. While predicted probabilities of a female 

pike being a quality fish were increasing from spring (55%) throughout Summer and 

autumn (68% and 67%, respectively) to Winter (78%), the effect of season was not 

statistically significant at the 5%-level (χ2 = 5.78, df = 3, p = 0.123). 

3.2.3 Attack- and landing rate 

The total numbers of attacks present in the dataset were 1032 (MPA) and 299 (OA), 

while the numbers of followers were 351 (MPA) and 119 (OA). Accordingly, in the MPA 

74.6% of all observed pike interactions were attacks while this figure was only 71.5% in 

the OA. The binomial model suggested that site was a significant predictor of the chance 

of a pike attacking the lure (χ2 = 4.51, df = 1, p = 0.034). It was found that pike in the 

MPA were 1.84 [1.05 - 3.23; 95% CL] times more likely to attack a lure that caught their 

attention (as judged by either following or biting the lure) compared to their conspecifics 

in the open access areas. Expressed in probabilities, pike in the open access had a 

73.5% probability of attacking the lure while this number was at 83.6% for pike from the 

MPA (Figure 30). The overall model explained 23% of the variation in attack rates 

(conditional R2 = 0.23), however, considering only the fixed model part (site), the 

explained variation was only 2% (marginal R2 = 0.02). 

Data used to model the landing rate contained a total of 457 and 93 landed pike from the 

MPA and OA, respectively. The sum of bites without a successful landing event from 

both sites were 575 and 206 for the MPA and OA, respectively. Consequently, the 
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percentages of bites upon which pike could successfully be landed were 44% and 31% 

for the MPA and OA, respectively. The model suggested, that the protection status had 

a significant effect on the probability of landing a fish (χ2 = 7.23, df = 1, p = 0.007). Pike 

from the MPA were 1.75 [1.16-2.63; 95% CL] more likely to be landed upon striking the 

lure when compared to pike from the OA areas. Expressed in probabilities, pike from the 

OA had a landing probability of only 29.8% while this number was 42.6% for pike from 

the MPA (Figure X). The overall model explained 6% of the variation in landing rate 

(conditional R2 = 0.06) while the fixed part alone could only explain 2% of the variation 

in the data (marginal R2 = 0.02). 

 

Figure 30 Differences in attack rates (left) and landing rates (right) of pike between MPA 

and OA (x-axis). Red points display the estimated means from the model output [± 95% 

Confidence limits]. Grey dots display the raw data used as model input where each dot 

corresponds to one fishing session. Size and shade visualize the number of pike 

encounters in each session, which comprise bites plus followers for the attack rate (left) 

and bites plus landed pike for the landing rate (right). Large dark dots have a higher 

weight in the model. Differences between MPA and OA were significant for both indices 

(p = 0.034 and p < 0.01 for attack rate and landing rate, respectively). 

3.2.4 Probability of zero catch 

The site was a significant predictor for the probability of not getting fish contacts within a 

1 h angling session (χ2 = 13.6, df = 1, p < 0.001). Predicted probabilities were 41% 

[0.275 - 0.568; 95% CL] for the MPA and 73% [0.595 - 0.835; 95% CL] for the OA, when 
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not accounting for seasonal differences. The season was significantly affecting the 

probability of no fish contacts (χ2 = 18.5, df = 3, p < 0.001) with highest predicted 

probabilites found in autumn with 74% [0.603 - 0.849; 95% CL], followed by winter with 

69% [0.497 - 0.828; 95% CL] and summer with 47% [0.297 - 0.657; 95% CL], while the 

lowest probability was predicted for spring with 39% [0.25 - 0.56; 95% CL], independent 

of the site. Predictions are displayed in Figure 31. Results from post-hoc comparisons 

can be found found in Table 13. The interaction effect between season and site was not 

significant (χ2 = 2.93, df = 3, p = 0.403), indicating that differences in the probability of 

no contacts between the sites were not related to seasons. The model explained 21% of 

the variation contained in the data (R2 = 0.208). 

 

Figure 31 Probabilities of obtaining no fish contact during a 1 h angling session for each 

site (x-axis) and season (y-axis), as predicted from binomial GLMM. Slopes between 

MPA and OA are not significantly different between the seasons. 

Table 13 Post-hoc comparisons between the probability of no fish contacts in different 

seasons. Significant differences at the 5%-level are highlighted in bold. 

Contrast Odds ratio SE p-value 

Spring / Summer 0.7238 0.2989 0.8623 

Spring / Autumn 0.2233 0.0839 0.0004 

Spring / Winter 0.2985 0.1365 0.0409 

Summer / Autumn 0.3085 0.1234 0.0173 

Summer / Winter 0.4124 0.1993 0.2577 

Autumn / Winter 1.3369 0.5852 0.9109 
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3.2.5 Evidence for timidity-induced effects on CPUE 

3.2.5.I Angling*Gillnets 

In the model comparing catches from angling and gillnets in spring, the interaction 

between site and gear was found to be not significant (χ2 = 0.07, df = 1, p = 0.788), 

meaning that the differences in relative abundance between MPA and OA were similar 

between the CPUEs of both gears as can be seen by the nearly parallel lines between 

the predicted values of the two gears between the sites in Figure 32. This result is in 

contrast the hypothesis, as angling catches were expected to exhibit a steeper slope 

between the sites than did gillnets. Looking at the individual effects, normalized catches 

were not significantly different between the methods (χ2 = 2.27, df = 1, p = 0.132) but 

were highly dependent on the site with significantly higher catches inside the MPA 

(χ2 = 22, df = 1, p < 0.001). The model explained 27.7% of the variance in the data 

(R2 = 0.277). 

 

Figure 32 Scaled data for angling and gillnet-catches from spring 2022. Colored points 

and boxplots show the distribution of the normalized data. Black points display the 

predicted model values for each group, errorbars show the 95% confidence intervals 

estimated from bootstrapping. Slope differences between black lines connecting 

predicted values for each gear between the sites visualize the interaction effect. 
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3.2.5.II Angling*eDNA 

The interaction effect between site and gear was significantly improving the model 

(χ2 = 6.66, df = 1, p = 0.01). Accordingly, there were obvious differences in the slopes 

between MPA and OA between the two gears (Figure 33) which were in line with the 

hypothesis, since scaled CPUE exhibited a stronger decrease between sites for angling 

than for eDNA. The individual effect of method was significant at the 5%-level (χ2 = 4.79, 

df = 1, p = 0.029) as was the effect of site (χ2 = 34.1, df = 1, p < 0.001) but both must be 

interpreted in the light of the presence of the significant interaction effect between them. 

The proportion of variance explained by the model was 35.2%. 

 

Figure 33 Colored points represent normalized raw data from angling (yellow) and eDNA 

sampling (blue) for each site (MPA / OA). Boxplots display the distribution of data. Black 

dots show model predictions with errorbars displaying the 95% confidence intervals from 

bootstrapping. The difference in slopes between black lines visualizes the interaction 

effect between gear and site. 

3.2.5.III Angling*Telemetry 

The interaction term between site and gear was found to be non-significant (χ2 = 2.02, 

df = 1, p = 0.156), indicating that there was no significant difference in slopes between 

MPA and OA between the two gears, contrasting the hypothesis that angling catches 

exhibited steeper slopes between the sites. While not significant, normalized telemetry 

counts even showed a more pronounced difference in slopes between the sites than did 
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normalized angling data (Figure 34). The site was highly significantly explaining 

differences in normalized CPUE (χ2 = 14.9, df = 1, p < 0.001) with higher values found 

in the MPA. Differences between the two gears were borderline significant where 

response values tended to be higher in normalized telemetry data (χ2 = 3.66, df = 1, 

p = 0.056). The model explained 36.9% (R2 = 0.369) of variance contained in the data. 

 

Figure 34 scaled CPUE values from telemetry and angling data. Colored points represent 

individual data points with boxplots reflecting distribution of the data. Black dots display 

model estimates, errorbars show 95% confidence intervals from bootstrapping. 

3.2.6 Lure-effects on catchability 

3.2.6.I Lure type (observational) 

When distinguishing between 6 levels in the variable lure type, the individual main effect 

of lure type had a marginally significant effect (χ2 = 10.8, df = 5, p = 0.055) on the CPUE 

while the site was highly significant (χ2 = 32.7, df = 1, p < 0.001). However, the interaction 

effect between site and lure type was significant too (χ2 = 12.1, df = 5, p = 0.033), 

indicating that the difference in catch rates between MPA and OA had different 

magnitudes depending on the lure type. Strongest proportional changes in catch rates 

between the sites were observed with metal lures where the number of pike captured in 

the MPA was more than 9-fold higher in the MPA than in the OA (emmeans, 

ratio = 9.6 ± 6.4 SE, p < 0.001), followed by rubber lures where the difference was more 
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than 7-fold (emmeans, ratio = 7.3 ± 2.3 SE, p < 0.001). Values were lower for swimbaits 

(emmeans, ratio = 4.4 ± 1.5 SE, p < 0.001), crankbaits (emmeans, ratio = 4.2 ± 2.9 SE, 

p = 0.034), flies (emmeans, ratio = 3.6 ± 1.5 SE, p = 0.002) and jerkbaits (emmeans, 

ratio = 2.4 ± 0.9 SE, p = 0.024). The differences in the slopes between MPA and OA 

among different lure types (Figure 35, Figure 36) were significant at the 5%-level only 

between metal lures and jerbkaits (p < 0.05) and between rubber lures and jerkbaits 

(p < 0.01). 

 

Figure 35 Differences in pike CPUE (pike/h) for different lure types (6 levels) between 

MPA and OA. Raw data (right y-axis) are plotted as colored points where, each 

representing one fishing session. Predicted means and standard errors (left y-axis) are 

displayed in black. Stars on the lower plot margin indicate significant differences for each 

lure type between MPA and OA (* = p < 0.05, ** = p < 0.01, *** = p < 0.001) and n 

specifies the number of observations (number of fishing sessions each lure was fished). 

Lure types along the x-axis are ordered in decreasing order of proportional change 

(difference in predicted CPUE between MPA and OA).  

In the model with lure type consisting of only 2 levels (hard vs. soft lures), the main effect 

site was significant (χ2 = 33.5, df = 1, p < 0.001) while the lure type was not (χ2 = 2.02, 

df = 1, p = 0.155), indicating that the categorization of lures into hard and soft lures did 

not explain overall differences in catch rates. The interaction effect between lure type 

and site was not significant (χ2 = 2.19, df = 1, p = 0.138) as can be seen by the parallel 
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slopes for both categories between MPA and OA in Figure 36. Hence, there was no 

differential pattern in catch rates between the sites potentially indicative of timidity. 

 

Figure 36 CPUE (pike/h) of the six different lure categories (6 levels, represented by 

color) by site (x-axis). Model predictions and standard errors (left y-axis) are plotted on 

top of raw data (right y-axis), represented by small colored points. The significant 

interaction is visualized by the variation in slopes between MPA and OA along the x-axis. 

Lures are ordered by effect size from left (strongest) to right (lowest). 

 

Figure 37 Catch rates (pike/h) for soft and hard lures (color) in the two sites (x-axis). Raw 

data points are displayed as small dots (right y-axis), black points represent model 
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estimates (left y-axis). Stars on the lower plot margin indicate significance for differences 

between the lure types within each respective site (n.s. = p > 0.05, * = p < 0.05). The 

lack of a significant interaction effect between site and lure type can be deducted from 

the approximately equal slopes between MPA and OA between the lure types. 

3.2.6.II Lure color (observational) 

In the model assessing the interaction effect between lure color and site, only site was 

found to be statistically significant (χ2 = 53.9, df = 1, p < 0.001) while the effect of lure 

color was not (χ2 = 2.14, df = 1, p = 0.144). For the interaction term, the model results 

indicated no statistical significance (χ2 = 3.1, df = 1, p = 0.078). Interestingly, however, 

moderate statistical significance was found in the difference of the two colors on CPUE 

within the MPA (p < 0.05). However, the effect was contrary to the hypothesis H5 that 

shock colors may generate higher catch rates in unfished areas. At the same time, 

predicted catch rates in open access areas were slightly higher for shock colors than for 

natural colors but this difference was not statistically significant. The model predictions 

are displayed in Figure 38. 

 

Figure 38 CPUE (pike/h) for different lure colors between the sites (x-axis). Model 

predictions (left y-axis) are displayed on top of raw data points (right y-axis). Stars on the 

lower plot margin indicate significance for differences between the colors within reach 

respective site (n.s. = p > 0.05, * = p < 0.05). 

3.2.6.III Lure Color (Experimental) 

In the color experiment with standardized lures, the site was a significant predictor of 

catch rates (χ2 = 18.6, df = 1, p < 0.001). There was no significant effect of lure color on 

catch rates, indicating that overall CPUE was comparable between the bright colored 

and the naturally colored rubber trout (χ2 = 1, df = 1, p = 0.316). No significant interaction 
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effect was found between lure color and site (χ2 = 0.14, df = 1, p = 0.705), indicating that 

the catch rates of the two colors were independent of the site. 

 

Figure 39 CPUE (pike/hour) from standardized lure angling with the two color-patterns. 

Predicted data (left y-axis) are plotted over raw data (right y-axis). Each data point 

represents one angling session. Stars on the lower plot margin indicate significance for 

differences between the colors within reach respective site (n.s. = p > 0.05, * = p < 0.05). 

3.2.7 Analysis of recaptures 

3.2.7.I Recapture Gear 

For pike which were recaptured, the gear at first capture was highly significantly related 

to the gear at second capture (p < 0.0001, df = 1, chisq = 104.8). However, this 

relationship was contrary to the hypothesis. Indeed, pike that were first captured with 

lures had a 20% [0.169 - 0.245; 95% CL] probability of being recaptured with commercial 

gear while this figure was at 63% [0.563 - 0.691; 95% CL] for fish whose first capture 

event took place with commercial gear. 

3.2.7.II Time to recapture 

The durations between the first and second capture of recaptured pike were higher for 

the group of fish recaptured with commercial fishing gear (291.3 ± 222.8 days [mean ± 

SD]; median = 247) than for those fish which were recaptures with lures (253.2 ± 206 

[mean ± SD]; median = 207) and this difference was significant (p < 0.05). This finding 
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was contrary to the hypothesis, as pike were expected to exhibit longer timespans 

between to angling captures due to lure avoidant behavior. 

 

Figure 40 Comparison of the time between two subsequent captures of individual pike. 

Groups on the x-axis separate fish into pike which have been captures with lures both 

times (“Angling-Angling”) or which have been caught with Lures the first time and who 

have ben recaptured with commercial gears (“Angling-Commercial”). Colors denote the 

calendar month of the respective recapture event, shapes display sex. Distribution is 

emphasized by boxplots (median, box: 25 and 75 percentile, whisker: 10 and 90 

percentile). Mean values for each group are displayed by black dots. 

3.2.7.III Recapture Probability between Sites 

Site was not a significant predictor of the probability of a recapture (χ2 = 0.02, p = 0.8782, 

df = 1). The estimated probabilities of a recapture were 6.3% [4.7 - 8.4; 95% CL] for the 

MPA and 6.1% [4.8 – 7.8; 95% CL] for the OA. 
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4 Discussion 

In the present study, the effect of lure timidity was investigated in a coastal Baltic pike 

population exposed to angling and commercial fishing by comparing pike catch rates, 

behavior and life-history traits between MPAs and OAs. In support of H1, data from 

different sampling gears suggested that pike abundance was lower in the OA sites 

compared to MPAs, likely due to commercial and recreational fisheries removals 

(Goedde & Coble 1981; Mosindy et al. 1987; Pierce et al. 1995; Edgren 2005; Arlinghaus 

et al. 2010; Gwinn et al. 2015; Ahrens et al. 2020; Bergström et al. 2022a, b; Eklöf et al. 

2023). A higher share of large pike was captured inside the MPAs compared to OAs with 

angling, suggesting that recreational and commercial fishing caused truncation of the 

size structure in OA sites through fishing mortality and selective removal of large fish 

(Goedde & Coble 1981; Olson & Cunningham 1989; Jolley et al. 2008; Sharma & 

Borgstrøm 2008; Pierce et al. 2010; Olele et al. 2016; Tiainen et al. 2017), thus 

supporting H2. The contribution of lure timidity to lower angling catches in OA sites could 

not be clearly documented using gear-specific catch-rate data, but the behavioral metrics 

attack-rate and landing-rate in angling were significantly lower in OA sites, indicating that 

pike are harder to catch with artificial lures in sites exposed to angling pressure and thus 

timidity was present to some degree, supporting H3. When controlled for sex, pike 

captured with angling in OA sites were equal in size but younger and exhibited faster 

growth compared to pike angled in MPAs and compared to pike sampled with gillnets in 

both sites, partially supporting H4. This suggested that the fastest growing fish were 

more vulnerable to fishing in OA sites, or alternatively that the smaller growing fish were 

less vulnerable, which could be an adaptive response to past fishing pressure or a result 

of learning to avoid lures. In disagreement with H5, there was no evidence of lure color 

amplifying a timidity effect. However, differences in catch rates between MPA and OA 

varied with lure type, potentially associated with differences in lure avoidance towards 

specific lures such as spoons. Recapture data revealed no support for lure-timidity and 

did thus not align with H6 and H7. In conclusion, while several lines of evidence 

suggested lure timidity was present in the coastal pike stock, its magnitude was not 

strong enough to be revealed in the gear-specific catch-rate comparisons. Yet, all of the 

non-angling gear was found to have limitations and therefore, the gear-specific 

comparisons of angling and non-angling gear types shall not be overinterpreted. It is 

concluded that timidity exerts impacts on catchability, but this effect is perhaps less 

important to the abundance-reducing effect of fishing leading to reduced catch rates in 

OA sites. 
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4.1 Pike abundances between MPA and OA 

Significantly higher pike catch rates inside MPAs when compared to OAs were evident 

from all sampling methods employed in this study, however, clear seasonal patterns 

were found for most gears such that differences in pike catch rates among sites were 

not evident in all time periods and for all MPA vs. OA comparisons.  

Angling catch rates were consistently higher in MPAs across seasons and areas. The 

same trend was found for spring gillnet catches; however, due to strong seasonal 

variation in catchability as found in other studies on pike (Neumann et al. 1995; Grant et 

al. 2004) inferential power on site specific differences in CPUE was strongly limited 

during summer and autumn. While gillnets were found to produce reliable estimates of 

pike abundance in lake studies where angling data revealed no apparent relationship to 

abundance (Pierce & Tomcko 2003), opposing views were expressed for sampling of 

pike in the Baltic Sea where gillnets constitute a poor sampling method for pike due to 

the low catchability during warmer months (Holmgren 1999; Donadi et al. 2017; 

Olsson 2019). Pierce (2012) reported greater stochasticity in spring catches and thus 

advocated overnight gillnet sampling in summer for representative results of abundance, 

which contrasts the present findings. Given that gillnet catchability not only depends on 

temperature but can also greatly vary across waterbodies with different basin 

characteristics (Pierce et al. 2010; Grant et al. 2004), it seems that the applicability of 

gillnets as a method to estimate relative abundances is highly context dependent. In 

contrast to Pierce & Tomcko (2003), many authors have argued that angling tracks 

abundances relatively well (Arlinghaus et al. 2016b; Eklöf et al. 2023; Niemi et al. 2023; 

Tibblin et al. 2023) despite concerns that results might underrepresent abundances in 

sites with fishing pressure due to lure timidity (Beukema 1970; Eklöf et al. 2023). 

Notwithstanding the aforementioned biases, both gillnets and angling are commonly 

used to infer relative pike abundance and the results strongly suggest that pike were 

more abundant in the MPA sites of all three areas investigated in this study compared to 

the respective OA sites.  

For the other two methods employed, larger uncertainty remains. While telemetry counts 

were likewise consistently higher in MPAs, it must be considered that tagging was 

unbalanced between the sites with the majority of pike tagged inside the MPAs and the 

results therefore have to be interpreted with caution. Similar preservations apply to eDNA 

concentrations, where the strong variation across seasons, sites and areas could be due 

to abiotic factors influencing both excretion rate and decay of DNA (Lacoursière-Roussel 

et al. 2016; Rourke et al. 2022; Ogonowski et al. 2023) and reliable correlations with 
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abundance in pike have so far only been produced under controlled conditions (Rourke 

et al. 2022; Ogonowski et al. 2023).  

The results are consistent with other studies showing increased abundances of target 

species in MPAs that reduce fishing pressure (McCormick et al. 1987; Côté et al. 2001; 

Ojeda-Martínez et al. 2007; Lester et al. 2009; García-Rubies et al. 2013). Importantly, 

MPAs that limit or reduce fishing pressure have been found to increase pike abundance 

and evidence for this comes from lakes (de Moraes et al. 2023) but also from other areas 

of the coastal Baltic Sea (Edgren 2005; Bergström et al. 2007; Bergström et al. 2022a, 

b), where pike catch rates were found to be two to six times higher inside MPAs when 

compared to reference sites. Eklöf et al. (2023) found that even seasonally closed areas 

along the Swedish Baltic coast provided 2.35 times higher pike angling CPUE compared 

to reference sites and discussed lure timidity as potentially enhancing the pronounced 

differences in catch rates between the sites. Indeed, higher angling CPUE inside MPAs 

compared to adjacent OA sites can not necessarily be translated into equally strong 

differences in abundance. For example, Alós & Arlinghaus (2013) and a follow-up study 

by Alós et al. (2015a) found that angling catch rates in a Mediterranean MPA were 

significantly higher compared to reference sites while no difference in fish abundance 

was found. However, given that studies in pike included different sampling gears and 

effects were consistent across studies, the exclusion or reduction of fishing effort in 

MPAs is very likely to have abundance-increasing effects. 

Angling can significantly reduce pike biomass and abundance and removal rates of up 

to 50% of annual production have been found in extreme cases (Mosindy et al. 1987; 

Goedde & Coble 1981; Pierce et al. 1995; Edgren 2005; Bergström et al. 2023a; Eklöf 

et al. 2023). The observed higher pike abundances in MPAs of the Swedish coastal 

waters were likewise found in systems where angling constitutes the dominant or only 

form of exploitation in the investigated reference sites (Edgren 2005; Bergström et al. 

2022b; Eklöf et al. 2023), indicating that anglers are capable of reducing pike 

abundances significantly in these systems. However, also commercial exploitation of 

pike can reduce abundances significantly (Edgren 2005; Bergström et al. 2007; Jansen 

et al. 2013). In the study system, recreational and commercial fishers currently catch 

roughly equal amounts of pike (Radinger & Arlinghaus 2023) and overall removals 

through commercial fishers are expected to be higher because 74% of pike captured by 

recreational fishers are nowadays released (Arlinghaus et al 2023b). However, removals 

through anglers were found to be exceeding commercial fisheries landings until recently 

(Arlinghaus et al. 2023b) and the current situation may thus be caused by higher 

removals from anglers in the past. Overall removals are currently too high and the pike 

stock is size and growth overfished (van Gemert et al. 2022; Arlinghaus et al. 2023c, 
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Fitzgerald et al. 2023). Among the areas investigated in this study, no commercial fishing 

for pike was observed in Werderbucht and differences in abundance are therefore likely 

attributable to removals from commercial fishers, while in Ummanz, commercial fishing 

for pike took place in both sites but was mainly conducted by one fisher inside the MPA 

and the factor most strongly differentiating the MPA vs. OA contrast was the lack of 

angling inside the MPA. In Sellin, commercial and recreational fishing for pike was 

present in both sites but to a lesser degree in the MPA and it seems reasonable to 

assume that both user groups contribute to the lower abundances in the OA site. In line 

with the observed differences in fishing effort between MPA and OA across areas, the 

lowest mean angling CPUE from all three MPA sites was found in Sellin, indicating that 

the joined exploitation from both user groups decreased pike abundances while the 

highest CPUE was found in the MPA of Werderbucht where pike were not targeted by 

fisheries. It therefore seems very likely that differences in overall fishing mortality 

between the sites were responsible for the observed differences in relative abundance 

and that the lack or reduction of fishing mortality inside MPAs allowed for a recovery of 

densities (García-Rubies et al. 2013). This is particularly likely for pike, who has been 

found to have a rather sedentary behavior in coastal lagoons (Karås & Lehtonen 1993; 

Dhellemmes et al. 2023a, b). This increases the protection value of even small MPAs as 

the pike therein are exposed to lower fishing mortality, even if some pike roam outside 

the protection boundaries as shown for the lagoon pike (Arlinghaus et al. 2023d).  

There may be other factors related to habitat quality differences among the sites that 

might have contributed to abundance differences unrelated to past and current fishing 

pressure. Many MPAs are historically placed in locations with high ecological value 

(Agardy 1994) and this was the case in the current system, too. While macrophyte 

coverages, known to correlate strongly with pike abundance (Casselman & Lewis 1996; 

Grimm & Klinge 1996), were comparable between the sites, two of the MPA sites were 

shallower and more sheltered than their OA counterparts which may affect pike 

abundance independent of differences in fishing pressure (Pursiainen et al. 2021; Flink 

et al. 2023; Niemi et al. 2023; Roser et al. 2023). Yet, the consistency of the response 

across all three areas and the collective body of work in the published record strongly 

suggests that pike fishing has strong abundance reducing effects on the harvestable pike 

in the system. 

4.2 Body size and growth 

While mean sizes were not significantly different between MPA and OA sites, a higher 

proportional stock density index was found in the MPAs of Ummanz and Sellin compared 

to the OA sites. As pike were targeted by recreational and commercial fishers in both 
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areas, the observed reduction of large pike in OA sites likely constitutes demographic 

truncation through fisheries mortality as commonly observed in commercial (Jansen et 

al. 2013) and recreational fisheries (Goedde & Coble 1981; Olson & Cunningham 1989; 

Edgren 2005; Arlinghaus et al. 2010; Pierce et al. 2010; Gwinn et al. 2015; Olele et al. 

2016; Ahrens et al. 2020). In both areas commercial fishing effort was not only observed 

in the OA sites but to a limited extend also inside the MPAs and some angling was 

present in the MPA of Sellin. Therefore, demographic effects through fishing mortality 

were likely present in both sites, perhaps contributing to the lack of observed differences 

in mean sizes. In Werderbucht, no commercial fishing gear targeting pike could be 

observed in any of the sites and pike seem to be predominantly targeted by recreational 

fishers who nowadays have high release rates of 74% (Arlinghaus et al. 2023b). 

Therefore, overall fishing mortality is likely lower compared to other areas and relatedly 

demographic effects were not found in this area. 

Pike from OA sites were significantly younger compared to fish from the MPAs, which 

may be another indication for elevated mortality in sites with higher levels of recreational 

and commercial fishing pressure (Edgren 2005; Berggren et al. 2022). The higher share 

of larger and older pike in MPAs could possibly be amplified by active avoidance of areas 

with fishing pressure by the larger, vulnerable fish or be alternatively explained by high 

residency behavior and the fact that coastal pike are able to navigate back to MPAs upon 

translocation (Dhellemmes et al. 2023c). If pike have a high residency, the larger fish 

may simply accumulate in abundance in MPAs where they are less exposed to mortality, 

elevating size structure and the mean age of fish in the stock, as shown in this study and 

in Swedish MPA studies with pike (Edgren 2005; Berggren et al. 2022). 

Importantly, however, differences in age and also growth between the sites were 

modified by the gear in a way that there was no age or growth difference between the 

sites for pike captured with gillnets while angling selectively captured younger and faster 

growing pike in OA sites. This gear-specific selectivity on fish with different growth 

strongly suggests that the angling gear preferentially captured one growth-phenotype. 

Either the faster growing fish present in OA sites showed higher vulnerability to angling 

or past selection and possibly evolutionary responses have reduced the reactivity of the 

slower growing phenotypes in the OA sites to rod-and-reel fishing, or both. 

The differential vulnerability towards the different gear types among growth-phenotypes 

in OA sites indicated that there are differences in behavioral attributes associated with 

angling vulnerability. The pace of life hypothesis posits that repeatable individual 

behaviors (“personality”) are predictably associated with life-history-traits (Réale et al. 

2007). For example, growth rate and boldness are assumed to correlate across taxa 
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(Stamps 2007). In fish, this relationship was found both between genotypes but also 

between individuals exhibiting natural variation in boldness (Biro et al. 2004; Mas-Muñoz 

et al. 2011; Klefoth et al. 2017). As boldness is often (Klefoth et al. 2017) but not always 

(Härkönen et al. 2015; Vainikka et al. 2015; Keiling et al. 2020; Bieber et al. 2023a) 

associated with increased angling vulnerability (summarized in Monk 2017), angling may 

select for slow growth via the removal of bold and fast-growing individuals (Biro & Post 

2008; Sutter et al. 2012; Klefoth et al. 2017). In pike, growth rate was not found to 

correlate with boldness when assessed in standardized assays (Laskowski et al. 2016; 

Nyqvist et al. 2012). Instead, a relationship between growth rate and activity was 

confirmed in this species (Kobler et al. 2009; Nyqvist et al. 2017), a behavior that is also 

associated with a high angling vulnerability (Røste 2020; Monk et al. 2021). In line with 

this, Pieterek (2014) found that individuals with a high juvenile growth rate and increased 

swimming activity were also preferentially captured by angling. A positive relationship 

between growth rate and vulnerability to capture by passive gears (gill nets) has 

moreover previously been found in lake pike populations (Carlson et al. 2007; Edeline et 

al. 2007). Alternatively, also differences in aggression and/or space use may explain 

differential angling vulnerability, which has been shown to be related to attack rates in 

muskellunge (Bieber et al. 2023a). In addition, faster growing fish might require more 

energy and consequently exhibit greater hunger levels, which has been shown to 

increase vulnerability in muskellunge (Bieber et al. 2023b) and other predatory species 

(Bryan 1974; van Densen & Vijverberg 1982; Raat 1991). It is very likely that faster 

growing pike are more active feeders or more aggressive, which can both increase their 

vulnerability to angling through increased encounter rates with gear or increased 

readiness to attack (Lennox et al. 2017). 

Under ongoing angling selection, it can be expected that vulnerability-determining traits 

such as activity of aggression become increasingly scarce in exploited populations, 

potentially even accommodated by evolutionary responses (Arlinghaus et al. 2016a, 

2017b; Diaz Pauli & Sih 2017). The observed pattern may therefore (in part) be the result 

of past angling-selection on the stock in OA sites, leaving behind a large pool of less 

vulnerable, slower growing individuals in OA sites. Assuming that the possible selection 

has not occurred to the same degree in MPAs and exposure to lures was lower, keeping 

reactivity of all fishes high, overall angling vulnerability may be higher in these sites and 

this includes slower-growing individuals too. In line with the present findings, modelling 

approaches for pike have predicted that angling-induced selection on length increases 

reproductive investment and reduces somatic growth of adults (Arlinghaus et al. 2009). 

Relatedly, negative selection differentials on growth were estimated for pike under 

minimum length-limit exploitation, which readily captures the longer fish (Matsumura et 
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al. 2011; see also Monk et al. 2021 for empirical support). Studies from salmonids 

similarly suggest that exploited populations exhibit slower growth as adults as a result of 

continuous removal of fast-growing individuals (Nuhfer & Alexander 1994; Saura et al. 

2010).  

Interestingly, two selection lines of black bass exhibiting genetically based differences in 

angling vulnerability showed differences in metabolic rates but not in growth (Cooke et 

al. 2007; Redpath et al. 2010), while a different study investigating the same selection 

lines even found that the highly vulnerable line exhibited slower growth, likely due to 

increased energy consumption as a result of a higher metabolic cost (Redpath et al. 

2009; Sutter at al. 2012). Hence, there is considerable inconsistency between different 

studies and complex correlations between different behavioral and metabolic traits and 

outcomes on growth rate exist, making the mechanistic interpretation of the observed 

relationship found in this study challenging. It seems most likely however, that a 

behavioral trait is involved in lure avoidance or space behavior (with faster growing pike 

moving more) and a metabolic reason, such as elevated hunger levels, positively affects 

growth rate, which in turn affects vulnerability to angling. If there is heritable variation 

underlying the growth rate, angling-selection may lead to evolution of low-vulnerable 

pike, which would contribute to the reduced catch rates offered by heavily exploited OA 

sites. 

4.3 Evidence for angling-induced timidity from gear comparisons 

No clear evidence for timidity could be revealed by the gear comparisons, which rely on 

the assumption that non-angling gear tracks pike abundance in an unbiased way. There 

are no unbiased fish sampling gears and every method possesses inherent limitations 

(Pierce & Tomcko 2003; Pierce et al. 2010; Kuparinen et al. 2012; Hangsleben et al. 

2013; Fischer & Quist 2014; Allen et al. 2020). Obtaining estimates of pike abundance 

is particularly challenging as most sampling methods available to date are passive gears 

where the behavior of the fish determines a capture. Therefore, a solid quantification of 

the effect size was not possible in the present study. 

The comparison between normalized spring data for angling and gillnet showed no 

difference in normalized CPUE between the sites for gillnets and angling, which 

contrasted the hypothesized lower angling catchability in OA sites due to timidity. A 

possible explanation for this pattern is that the MPAs were subject to higher levels of 

spawning activity. Directed spawning migrations of pike into shallow bays were found in 

many areas of the Baltic, including this system, seasonally increasing abundance inside 

these sites (Pursiainen et al. 2021; Flink et al. 2023; Roser et al. 2023). As gillnet 

catchability is highly dependent on movement and pike activity peaks during spawning 
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(Casselman 1978; Mann 1996; Grant et al. 2004; Dhellemmes et al. 2023a), higher 

gillnet catch rates inside MPAs could be attributable to an increased use of the MPAs as 

spawning sites and associated swimming peaks prior and during spawning, thus 

constituting an additive effect on catch rates. This causes an artificially high catchability 

of gill nets which in turn leads to a steepening of the slope when comparing CPUE within 

and outside MPAs for gill nets. A steeping of the gill net slopes in turn erodes the 

possibility to detect timidity by angling, which would be suggested if the angling CPUE 

drops more strongly from MPA to OA than the CPUE of the other gear. In summer and 

autumn gillnet catchability was low and did not allow for statistical comparisons, however, 

the general trend suggested no markedly higher CPUE in MPAs during these seasons 

with 1 out of 3 and 5 out of 9 pike captured in MPAs in summer and autumn, respectively. 

Seasonal spawning aggregations inside MPAs may not equally increase angling CPUE 

in these sites as pike might focus primarily on reproduction rather than food intake. In 

line with this, overall angling catches were comparatively low during spring sampling. 

While most previous studies on seasonality in pike angling CPUE did not cover the 

spawning months (Margenau et al. 2003; Kuparinen et al. 2010; Jansen et al. 2013), 

Eklöf et al. (2023) indeed found a significant positive effect of temperature on pike 

angling CPUE in Swedish bays in April but suggested that increased physical activity of 

the poikilotherm pike was driving this effect. In summary, there are indications that gillnet 

CPUE was disproportionately high in MPAs in spring, potentially obscuring the effect of 

interest. 

Using eDNA concentrations as a baseline for abundance, the results suggest that overall 

pike abundances were comparable between the sites while angling catch rates were 

markedly higher in MPAs and this effect could be attributable to timidity. The majority of 

studies from freshwater systems found a positive relationship between eDNA 

concentrations and other measures of abundance for a number of species, generally 

supporting its use as a substitute measure of abundance (reviewed in Rourke et al. 

2021). Karlsson et al. (2022) found a strong correlation between pike biomass and eDNA 

concentrations under controlled conditions, but under natural conditions a relationship 

between angling CPUE and eDNA concentrations could only be established at high 

temperatures, likely due to a temporal overlap with spawning activity which boosts eDNA 

concentrations through the release of eggs and milt to the water (Ogonowski et al. 2023). 

This effect likely also explains the high concentrations detected in spring samples and 

measurements therefore presumably depict a seasonally biased picture of abundance, 

similar to the gillnet data. Outside of spring, low concentrations and a high share of 

unexplained zero values rendered the reliability of the measurements questionable. 

eDNA is relatively short-lived and abiotic variables such as salinity, temperature and 
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sunlight affect the decay rates, which may have contributed to the relatively high share 

of zeros in the data (Rourke et al. 2021). Moreover, in Werderbucht and Ummanz water 

masses between MPA and OA change frequently with the tides, generally favoring more 

similar concentrations between the sites. Consequently, while the hypothesis was 

supported in the postulated way, uncertainty about the applicability of eDNA as a fine 

scaled tool to compare fish abundances between two adjacent sites remain.  

Contrasting the hypothesis, no difference was found in the relative abundance derived 

from telemetry when compared to differences in angling CPUE between the sites. 

Telemetry has been used successfully as a tool to determine abundances in fish 

(Dudgeon et al. 2015). However, the numbers of tagged fish were unbalanced between 

the sites in the present study with the majority of pike tagged in the MPAs. Also sample 

size was low. Thus, the reliability of the positional data as a measure of relative 

abundance between the sites is limited and only holds true if individuals frequently 

change between the sites. Pike are usually quite sedentary (Diana 1980; Eklöv 1997; 

Berkström et al. 2021) and observations from the study system confirm that the majority 

of fish exhibit high site fidelity (Dhellemmes et al. 2023a, b). Mean home ranges were 

found to be 160 ha (50% monthly utilization) and 1.330 ha (95% monthly utilization) and 

these values well exceed the size of most sites in this thesis, indicating that some pike 

regularly change between the sites (Dhellemmes et al. 2023b). In agreement with this, 

telemetry data revealed that about 30% of pike from the system are fully resident within 

MPAs and the vast majority of individuals is found in OA sites at least occasionally 

(Arlinghaus et al. 2023d). Mark-recapture data on the other hand suggest that individuals 

tagged inside MPAs were usually recaptured in these sites and the same was true for 

OAs, indicating that pike are rather resident most of the time (Karås & Lehtonen 1993; 

Arlinghaus et al. 2023d). Consequently, while there is evidence that dispersal of fish from 

MPAs takes place in the study system, pike tagged inside the MPA will still have an 

increased likelihood to be detected within that same MPA as the majority of individuals 

is rather stationary, rendering telemetry detections in this study unreliable as a proxy for 

relative abundance. 

Overall, the analysis of normalized catch rates between contrasting gears showed 

varying results and provided only limited indications for timidity, mainly due to 

uncertainties about sampling biases and strong seasonal variation in the data. All gear 

types have their own set of biases, and the unbiased estimation of pike abundance is a 

continued challenge (Kuparinen et al. 2012). In addition, there are statistical limitations 

to the comparison of datasets with different underlying distributions as it was the case. 

The overall contribution of timidity could not be quantified but given the approximately 

equal slopes between gears in the comparison of angling data with gillnets and telemetry, 
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it seems that lower angling catches in OA sites were mainly driven by differences in 

underlying abundance. 

4.4 Evidence for angling-induced timidity from other metrics 

Significantly lower attack rates on artificial lures were evident for pike in the OA sites 

compared to MPAs as judged by the number of followers relative to the number of attacks 

(73.5% and 83.6% attack probability in OA and MPA, respectively). A similar approach 

was used to quantify hook avoidance in brown trout (Salmo trutta L.) between two 

streams with and without fishing pressure by Young & Hayes (2004) who compared the 

share of individuals vulnerable to fly-fishing after spotting them visually. In line with the 

present findings, the ratio of captured to observed fish was significantly higher in the 

unfished stream. The behavior termed “follower” in the present study resembles predator 

inspection, commonly known from shoaling fish, where individuals approach potential 

predators to assess the associated risk (Pitcher et al. 1985; Pitcher et al. 1991; Csányi 

& Dóka 1993). The ability to distinguish artificial lures from prey is known from different 

predatory species (Andersen & LeRoy Heman 1969; Young & Hayes 2004; van Poorten 

et al. 2005; Askey et al. 2006; Lennox et al. 2016; Louison et al. 2019; Wegener et al. 

2018) and this includes pike (Beukema 1970; Lucas et al. 2023) but also the congeneric 

muskellunge (Esox masquinongy, Mitchill) (Bieber et al. 2023a). Even differentiation 

between different lure types was shown in black bass (Louison et al. 2019) and trout 

(Young & Hayes 2004). The stimuli involved in decision making are not yet understood, 

but vision seems to play a role for assessing risks (Young & Hayes; Sbragaglia et al. 

2018). Pike are visual predators (Raat 1988; Craig & Babaluk 1989) which benefit from 

high water clarity (Winkler 1991) and lure inspection seems constitute a mechanism by 

which individuals verify the risk of a lure visually. Because pike can also successfully 

hunt in turbid water using the lateral line (Raat 1988; Skov et al. 2002; Skov et al. 2007), 

however, lure inspection could also include decision making via acoustic vibrations. 

Given that the frequency of lure avoidance is correlated with exposure to local fishing 

effort in pike, the behavior seems to represent hook syhness (as shown in lake studies, 

Kuparinen et al. 2010; Arlinghaus et al. 2017), which can explain why pike in OA sites 

were indeed more cautious and harder to catch. While differences in turbidity between 

the sites may bias detection frequency of followers, no statistically meaningful 

differences in water clarity were present in the current study. 

Lower landing rates were found for pike in OA sites, meaning that a lower share of pike 

was captured relative to the number of registered bites when compared to the MPAs 

(29.8% and 42.6% landing probability in OA and MPA, respectively). The difference can 

be explained by fish more cautiously approaching lures (i.e. lower aggression) in OA 
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sites while pike in MPAs ingested lures more vigorously and deeper, thereby increasing 

their hooking probability. Arlinghaus et al. (2008) found that pike ingested natural baits 

deeper than artificial lures and suggested that this was because pike recognized natural 

baits as a food source. Furthermore, differences in hooking depth among different types 

of artificial lures were attributed to their resemblance with natural prey with more naturally 

appearing lures being ingested deeper (Arlinghaus et al. 2008). It may therefore be 

argued that the reduced landing rates in OA sites could indicate timidity by pike more 

frequently testing whether lures are actual prey, not ingesting them fully or striking less 

aggressively to reduce the hooking probability. In a laboratory experiment, bold pike were 

found to exhibit a higher probability to attack lures compared to shy individuals, showing 

that intrinsic differences in angling vulnerability exist among individuals in pike (Lucas 

et al. 2023). However, while the pike in the experiment were found to expel soft baits 

more quickly than dead baits, no differences in handling were found between shy and 

bold individuals (Lucas et al. 2023), which may suggest that the differences in landing 

rates between MPA and OA likewise could be unrelated to underlying differences in 

personality traits, which would suggest a stronger effect of learning (Beukema et al. 

1970). It is important to consider, however, that behaviors were found to be context 

dependent and vary with the environment, therefore behaviors determined in 

experimental setups may deviate from those under natural conditions (Klefoth et al. 

2012). 

Beukema (1970) found that spinners were quickly avoided in a catch and release fishery 

while catch rates with life bait remained stable over time. This suggests the ability for 

associative learning in these fish and the lower attack- and landing rates in OA sites may 

consequently have been observed because a higher proportion of individuals in these 

sites has had history of prior hooking experiences, rendering them invulnerable or more 

cautious to artificial lures. A recent laboratory study by Lucas et al. (2023) demonstrated 

that in pike the probability of attacking a rubber lure or dead bait decreased with the 

number of encounters even in the absence of hooks. Given that lure avoidance can even 

be induce through attacks on lures when not resulting in a capture event (Beukema 1970; 

Lucas et al. 2023) this immensely increases the scope for learning opportunities. In the 

present study, only one third of all pike from the OA sites could be landed following an 

attack, meaning that the number of pike which may have gained lure experiences 

through unsuccessful attacks is two times higher than the actual catch. Based on mark-

recapture studies, anglers were estimated to annually capture 10.2% of all pike in the 

lagoons (Radinger & Arlinghaus 2023). This suggests that 30% of the population may 

attempt an attack annually, but only one third of these fish are landed. Of the landed 

catch, 74% are released (Arlinghaus et al. 2023b). It can thus be estimated that a 
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substantial share of about one quarter of individuals in the stock could gain learning 

experiences in lure encounters, annually.  

An important consideration in hook shyness, however, is the question how persistent the 

effect is. Fish are known to retain learned lure avoidance only for limited amounts of time 

(Czapla et al. 2023), indicating that the knowledge about lures can be forgotten as shown 

by a boost in catch rates following extended fishing closures in coral reefs and pond 

studies with trout and bass (Feary et al. 2011; Januchowski-Hartley 2013; Koeck et al 

2020; Wegener et al. 2018). The duration for which hook avoidance can be retained was 

said to be up to one year in carp (Beukema 1969), but more recent work challenges this 

assumption (Czapla et al. 2023). As learning ability is substantially lower in pike and 

other predatory fish relative to carp (Coble et al. 1985), it can be expected that lure 

memory is substantially less in pike than in carp. To date, no studies have yet evaluated 

the duration of retention of hook avoidance in any predatory fish consistently. Based on 

time series of CPUE data, Kuparinen et al (2010) and Arlinghaus (2017a) argued that 

pike have a rather poor capacity for learning and might retain knowledge only for a few 

days but this assumption has not yet been corroborated by a more systematic approach. 

The more cautious behavior of pike from OA sites might also and additionally be a result 

of angling selection. The removal of vulnerable individuals from a population can result 

in evolution of traits in a population that reduce their overall vulnerability to angling, such 

as reduced boldness (Suski & Philipp 2004; Philipp 2009; Klefoth et al. 2017), aggression 

(Suski & Philipp 2004; Cooke et al. 2007) or exploration, activity and space use (Árnason 

et al. 2009; Alós et al. 2012, 2016; Härkönen et al. 2014, 2015; Monk et al. 2021). Pike 

are known to exhibit natural variation in behaviors and personality (Kobler et al. 2009; 

Tibblin et al. 2016; Lucas et al. 2023). These traits maybe directly selected upon or 

change in response to correlated selection on life-history traits (Arlinghaus et al. 2017b; 

Biro and Post 2008).  The classical assumption is that selection through angling favors 

the occurrence of shy, inactive or low aggressive individuals that become increasingly 

hard to capture (Phillip et al. 2009; Sutter et al. 2012; Arlinghaus et al. 2017b; Tsuboi et 

al. 2016; Monk et al. 2021), which can occur even with purely size-selective exploitation 

(Andersen et al. 2017). A shift in behavioral traits due to genetic changes induced by 

angling selection was found in other predatory species including salmonids (Tsuboi et 

al. 2016) and black bass (Philipp et al. 2009; Sutter et al. 2012) and selection on behavior 

is also known to act upon pike in recreational fisheries as more active individuals were 

found to exhibit higher angling vulnerability (Monk et al. 2021). Given the supposedly low 

capacity for learning in pike in combination with the previously discussed growth-

phenotypes selectively captured with angling gear, it seems that selection is an important 

component of lure timidity in pike that acts as an additional force. 
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4.5 Effects of lure type and color 

In the experimental approach comparing two identical lures with different color patterns, 

no evidence for differential catch rates between the sites was found, suggesting that lure 

avoidance in pike could be unrelated to lure color. Neither were overall catch rates 

different between the two colors. Likewise, there was no effect of lure color when 

grouping colors into “natural” and “shock” colors in a larger dataset. The effects of lure 

color differ between studies and species. In black bass, Moroga et al. (2015) found no 

effect of lure color on catch rates, while Wilde (2003) reported higher catch rates with 

firetiger when compared to more natural colors. Braun (2022) tested the effect of UV-

reactive colors in perch and found no effect on catch rates. Lure color affected catch 

rates in mackerel (Hsieh et al. 2001) and catch rates of different lure colors were found 

to shift with alterations in turbidity in walleye (Nieman et al. 2020). Lucas et al. (2023) 

tested the effect of lure color by presenting two differently colored soft baits to naïve pike 

in an experimental setting. The individuals were previously tested for boldness and no 

differences in the reaction towards the two lures were found between the behavioral 

types, indicating that lure color alone is not an influential factor of lure avoidance in pike 

and this observation is corroborated by the present findings. The lack of consistent 

findings with respect to lure color moreover suggests that color does not play a crucial 

role in angling catch rates (Lennox et al. 2017) 

No effects of lure type were found when using the categories “hard” and “soft” lures, 

however, there were differences among lures when a higher number of levels was 

maintained with metal lures and rubber lures showing significantly stronger differences 

between the sites than did jerkbaits. Arlinghaus et al. (2017a) previously found higher 

catch rates in pike using soft plastic lures over spoons and the finding was attributed to 

a higher level of realism of the former, rendering them more enticing for pike due to their 

greater resemblance with natural prey. A high frequency of deep hooking locations in 

pike when using soft-plastic lures was discussed to be due to the same mechanism 

(Arlinghaus et al. 2008), however, this finding was not consistent with another study and 

other factors such as water temperature, fishing style or the lure material were identified 

as potentially contributing to differences in hooking depth among different lure types 

(Arlinghaus et al. 2008; Stålhammar et al. 2014). In the current study there were no 

differences in the CPUE between rubber lures and metal lures in the OA sites while metal 

lures clearly outperformed rubber lures in MPA sites. Wilson et al. (2015) demonstrated 

that more conspicuous lures captured individuals with generally more bold behavior in 

two bass species. Likewise, larger and therefore more conspicuous fly patterns were 

less likely to attract trout from a river with high fishing pressure (Young & Hayes 2004). 
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It may thus be argued that the stimuli emitted from metal lures, especially the 

conspicuous reflection of light and acoustic stimuli, generate significant attention 

underwater which attracts naïve pike from greater distances or result in more aggressive 

attacks while more cautious pike from OA sites are less prone to be overly attracted by 

these stimuli.   

The results from lure trawling tentatively suggested, albeit at low sample size, that the 

bright and distinct bucktail spinner received markedly more attention inside the MPA 

compared to the rather natural and inconspicuous rubber trout. This may suggest that 

the vigorous stimuli (acoustic vibrations, color, sound and reflections) emitted from the 

bucktail spinner indeed create greater interest in pike from MPAs which may have 

experienced reduced or no exposure to lures. In contrast, pike in the OA showed 

seemingly lower susceptibility to these stimuli. However, the attack rate was low for the 

bucktail spinner inside the MPA suggesting that the attention may not actually be related 

to the pike’s willingness to feed or attack but rather represent curiosity to novel objects, 

termed neophilia (Bols 1977; Franks et al. 2023). In contrast, the relatively naturally 

moving rubber trout yielded a much lower number of interactions but higher attack rates, 

indicating that pike perceive the rubber trout as real prey. 

Differences in the slopes of different lure types between MPA and OA could be due to 

differential learning. However, Arlinghaus et al. (2017a) found no evidence for differential 

learning between spoons and rubber lures as catch rates of both lure types dropped at 

the same pace when fishing pressure was maintained for several days, indicating that 

both lure types were equally successfully and increasingly avoided by the pike. Lucas et 

al. (2023) likewise found no evidence for differential learning in pike where attack rates 

dropped equally fast for different rubber lures and dead bait. However, pike were found 

to be unable to discriminate life bait from natural prey (Beukema 1970). 

It is generally challenging to identify factors responsible for differential catch rates among 

lures due to the variety of stimuli emitted from different lure types and the complexity of 

factors influencing vulnerability (Lennox et al. 2017). It remains unclear why crankbaits 

showed no such differential pattern in catch rates between the sites as it would be 

expected that the noise and acoustic vibrations emitted from these lures create a similar 

effect as observed for metal lures. As lures were not fished systematically on all sampling 

days, result should be interpreted with caution.  

4.6 Recapture probability 

It was found that the amount of time between two captures of the same individual was 

higher for pike who were first captured with angling and recaptured with gillnets than for 
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fish captured with lures twice. This was contrary to the hypothesis as an angling capture 

was expected to reduce individual vulnerability towards angling for extended periods but 

not affect gillnet vulnerability. Gear avoidance is common in fisheries and the catchability 

of a gear type commonly decreases for individuals after a capture event (Waters 1960; 

Ricker 1958; Pierce 1997), including recapture on the same lure in angling (e.g., in 

salmon, Lennnox et al. 2016 and pike, Beukema 1970). This, together with the potential 

of fish rapidly recaptured on lures constituting the more vulnerable pools of fish, might 

explain the longer time of recapture shown by fish first captured on lures and recaptured 

with gill nets. However, it cannot be ruled out that the relationship in the present data is 

spurious and caused by uncontrolled spatial and temporal variability in different gear 

types used by anglers or fishers not present in the experiment or lack of reporting of 

recaptures. Commercial fishing pressure for pike is low in summer and autumn (Radinger 

et al. 2023). Therefore, pike are at risk for angling capture for longer periods of the year, 

which could also explain the observed trend. In addition, differences in the dominant form 

of exploitation exist between different lagoons (Arlinghaus et al. 2023c). Pike tagged in 

areas with high angling pressure but few commercial fishers therefore have a lower 

chance to encounter commercial gears and vice versa. This also could explain why the 

gear at first capture was significantly related to the gear at second capture. 

4.7 Overall assessment of angling-induced timidity 

Several indications of angling-induced timidity as well as the potential for growth-

phenotype selective angling were revealed in this study, but this effect was not shown 

when comparing catch rate differences of different gear types among MPA and OA sites. 

The latter does not rule out the presence of timidity but suggests that the abundance-

declining impact of angling and fishing combined might overrule in effect size any 

additional impact on catch rate by angling-induced timidity. This finding is expected as 

the abundance reduction of fishing should have stronger impacts than learning or 

evolutionary adaptions that affect catch rate (Eikeset et al. 2016). The clearest evidence 

for angling-induced timidity was found when comparing the attack- and landing rates, 

which were about an absolute 10% lower in OA sites. This figure, however, potentially 

underestimates the true effect size as both metrics only account for fish following the lure 

and being observed by the samplers, while those individuals indifferent to lures or not 

visible due to turbidity or other factors were not detected. This work, however, 

underscores the reflections by Eklöf et al. (2023) that timidity might increase the catch 

rates of pike in protected areas in the Baltic, but based on the data it is not possible to 

express the impact in relative terms and relative to the abundance-declining effect of 

fishing. The negative effect of angling pressure on catchability and catch rates has been 
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demonstrated repeatedly through decreasing catch rates in both non-predatory 

(Beukema 1969; Blackwell et al. 2023) and predatory species (Andersen & LeRoy 

Heman 1969; van Poorten et al. 2005; Askey et al. 2006; Louison et al. 2019; Wegener 

et al. 2018) including pike (Beukema 1970; Kuparinen et al. 2010; Arlinghaus et al. 

2017a), and this work underscores the effect in a field study.  

4.8 Study limitations 

There is a number of limitations to this work. Firstly, and most importantly, there were 

practical limitations to deriving precise abundance estimates of pike. While mark-

recapture methods may have yielded better estimates of abundance, there are additional 

limitations to such approach (Kuparinen et al. 2012). More importantly, the study took 

place in an open system where immigration and emigration were possible, violating basic 

assumptions of mark-recapture based abundance estimates (Ricker 1958). 

Consequently, relative abundance derived from angling-independent gears were used 

by employing multiple non-angling gears, which came with additional challenges and 

uncertainties as available fisheries sampling gears yield biased results (Pierce et al. 

2010; Hangsleben et al. 2013; Fischer & Quist 2004). In eDNA data, substantial 

uncertainties about the applicability for abundances in field studies in pike were present 

while gillnet effort was not sufficient for low catchabilities during summer and autumn. 

Similarly, sampling effort with long-lines was apparently insufficient as no catches were 

made in any of the seasons. For future studies, better insights could be gained when 

system-dependent gear-specific and seasonal variations in catchability are determined 

beforehand through pilot studies and sampling effort is adapted accordingly. It is hoped 

that visual tools or echosounders improve in quality so that those may be used as 

unbiased abundance estimators in the future. 

Second, all MPAs investigated in the present study experienced some current and past 

level of fishing pressure. While fishing effort was monitored on all sampling days, no data 

of actual pike removals in the study sites could be obtained, neither for present landings 

nor for long-term harvesting patters which would affect fisheries-induced effects in the 

long term. Under strict exclusion of all fishing activities, effects likely would have been 

more pronounced than revealed in the present study. 

A third limitation refers to the observational dataset used to explore catch rates of 

different lure types and colors. Lure types were not fully standardized and there were 

unequal numbers of observations between different lure types with some lures fished 

more frequently than others. Moreover, the categorization of both lure color and lure type 

remained subjective. A lure with a natural color might be highly conspicuous due to other 

characteristics such as movement or noise which were not accounted for. Consequently, 
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it is possible that results may be affected by biases or confounding factors. Future studies 

focusing on the effects of lure characteristics are encouraged to use more rigorous 

designs including standardization, randomization and systematic fishing. 

Due to low frequency of pike interactions during lure trawling as a result of insufficient 

effort, no inferences could be drawn from the standardized lure comparison inside and 

outside MPAs. However, there were some indications that reactions towards the two lure 

types were different between pike inside and outside the MPA. Similar approaches could 

widen the understanding about the stimuli and mechanisms involved in lure avoidance. 

Given that the number of followers was found to be associated with lure timidity, the use 

of lure cameras is encouraged for future studies. However, as other methods in this 

study, the effort necessary for sufficiently high sample sizes need to be considered as 

the number of fish interactions should be expected to be system- and context dependent. 

As a final limitations, the data on following vs. attacking depends on the visual observer, 

and pike might have been missed in turbid water and due to other reasons. Only if the 

effect was systematic in both sites the conclusions of this work are unaffected. 
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5 Conclusions and implications for management 
The current study provided insights into fisheries-induced effects on behavior and life-

history traits in a coastal northern pike populations subject to recreational and 

commercial exploitation by using MPAs as reference sites. While pike abundances were 

significantly lower in sites with fishing pressure, indicative of an impact of fishing 

mortality, a reduced vulnerability towards lures and growth-phenotype selective 

vulnerability was evident in pike from OA sites, likely in response to past angling. This 

phenomenon can occur as a result of learning and/or selection and evolution shaping 

the exploited stocks. It was not possible to quantify the absolute contribution of timidity 

to lower angling catch rates in OA sites, but the effect is assumed to be smaller compared 

to the abundance-declining effect. It can thus be concluded that while angling-induced 

timidity is present, its effect is overshadowed by differences in abundance between the 

sites, which constitute the main driver of higher catch rates inside MPAs. 

Ongoing angling-induced timidity and selection of faster-growing pike can lead to genetic 

changes in the target populations which might be interfering with natural selection 

processes and therefore could lead to non-optimal outcomes by contributing to 

downsizing (Monk et al. 2021) and reduced vulnerability to angling. Therefore, one 

implication of this work is that continued angling will reduce catch rates through reduction 

of abundance and reduced reactivity to lures. While the former can be managed with 

harvest constraints to both angling and commercial fishing (Ahrens et al. 2020), the latter 

can only be addressed by full or temporary cessation of fishing, e.g., through rotating 

closures (Feary et al. 2011; Januchowski-Hartley et al. 2014; Camp et al 2015; Wegener 

et al. 2015; Koeck et al. 2020). The use of full or partial protected MPAs is therefore 

recommended to allow vulnerable pike to remain in the stock and reproduce and to 

provide a buffer from which reactive fish can colonize open sites. Given that exchange 

of pike occurs between MPA and OA sites and reproduction often takes place inside 

MPAs, the risk of genetic changes might not be a large concern in the present system if 

sufficient pike survive to reproduce. The reduction in catch rates after exposure to 

angling may however be to some degree be unavoidable and periods of exceedingly 

high rates only be transitorily happening. Regularly pausing fishing pressure and 

reopening it will, however, help to recover catch rates, which cannot be achieved through 

catch-and-release alone as the abundance-declining impact of fishing might overshadow 

any learning or other timidity effects. Management of catch rates for anglers must take 

the removal of commercial fisheries into account because the same behavioral 

phenotypes might be under selection (e.g., active fish) and because also commercial 

fisheries will reduce abundance of pike through removals. As the pike stock is strongly 
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declining in recent years, reductions of total fishing mortality are necessary to recover 

the stock. No-take MPAs may be one of many tools that can accomplish this. Others 

include quotas, protected seasons or new harvest limits such as harvest slots (Ahrens 

et al. 2020). Although a set of rules already exists in the system, it seems not sufficient 

to guarantee high catch rates in OA sites.  The current mean catch rates in the lagoon 

fishery are below those expected from the average freshwater site in Mecklenburg-

Vorpommern (Birdsong et al. 2022; Arlinghaus et al. 2023b). 

Fisheries-induced effects on catchability bear important considerations from a 

management perspective as declining catch rates decrease the value of a fishery, 

especially to anglers (Beardmore et al. 2015; Birdsong et al. 2021). As the stock of 

investigation is a valuable source of tourism and therefore provides economic welfare for 

the region (Arlinghaus et al. 2023a, b), meeting anglers preferences is important 

consideration. Catch rates and the number of trophy fish have been identified as an 

important driver of angler satisfaction and are associated with a high willingness to pay 

(Koemle et al. 2022). The current catch rates in OA sites, however, provide little incentive 

for trips to the region, particularly for tourists and touristic effort has thus been declining 

recently. Currently, it is mainly anglers who are not allowed to fish in MPAs, while 

commercial fisheries hold exemptions. This is a problem socially as well as ecologically 

in terms of pike protection. The implementation of dynamic spatial regulations like 

rotating closures that are opened in a rotating fashion to exploitation by fishers and 

anglers could provide an alternative management approach. Rotating closures were 

found to reduce fisheries-induced effects on catch rates by avoiding ongoing selection 

on one hand and counteract learning effects on the other hand (Feary et al. 2011; 

Januchowski-Hartley et al. 2013; Camp et al. 2015; Wegener et al. 2018; Koeck et al. 

2020). Such regulations would also help maintain the genetic integrity of the stock, help 

fast-growing phenotypes to reproduce, while providing high catch rates, therefore 

meeting both conservational- and management goals.  
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Appendix 
Appendix 1 Post-hoc results (p-values) for testing the effect of site on abiotic 

environmental variables. No significant differences were found for any of the variables. 

Area Salinity Temperature Visibility 

Werderbucht 0.389 0.820 1 

Ummanz 0.583 0.912 0.888 

Sellin 0.098 0.842 0.153 

 

Appendix 2 Mean values and standard deviations of pike total body lengths for the three 

comparison areas for each site gear and site.  

Area Site Gear 
Mean total length 

(mm) ± SD 
n 

Werderbucht 

MPA 
A 791.9 ± 88.3 91 

S 751.9 ± 57.8  32 

OA 
A 808.5 ± 107.5 24 

S 753.9 ± 54.0 12 

Ummanz 

MPA 
A 840.8 ± 107.0 64 

S 780.5 ± 124.7 27 

OA 
A 785.3 ± 81.7 9 

S 766.9 ± 107.9 17 

Sellin 

MPA 
A 671.1 ± 151.2 52 

S 733.4 ± 85.8 19 

OA 
A 715.0 ± 87.7 23 

S 739.5 ± 82.8 16 
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Appendix 3 Mean values and standard deviations of pike ages determined from scale 

reading for the three comparison areas for each site gear and site. 

Area Gear Site Mean age (y) ± SD n 

Werderbucht 

A 
MPA 4.92 ± 1.37 72 

OA 3.95 ± 1.35 21 

S 
MPA 5.57 ± 1.16 30 

OA 5.55 ± 1.75 11 

Ummanz   

 

A 
MPA 6.44 ± 1.56 34 

OA 3.75 ± 1.5 4 

S 
MPA 4.87 ± 2.18 23 

OA 4.13 ± 1.99 16 

Sellin   

 

A 
MPA 3.35 ± 2.08 34 

OA 2.73 ± 2.05 11 

S 
MPA 4.74 ± 2.32 19 

OA 5.25 ± 2.26 16 

 

Appendix 4 Mean values and standard deviations of pike size corrected growth 

determined from scale reading for the three comparison areas for each site gear and 

site. Values were first summarized by individual to account for repeated measures.  

Area Gear Site 
Mean size corrected 
growth (mm) ± SD 

n 

Werderbucht 

A 
MPA 437.1 ± 41.6 72 

OA 465.5 ± 56.6 21 

S 
MPA 419.8 ± 36.6 30 

OA 411.5 ± 24.7 11 

Ummanz 

A 
MPA 433.3 ± 49.5 34 

OA 435.6 ± 50.7 4 

S 
MPA 443.3 ± 43.1 23 

OA 458.8 ± 66.1 16 

Sellin 

A 
MPA 431.5 ± 92.7 33 

OA 502.5 ± 60.7 11 

S 
MPA 447.8 ± 79.2 19 

OA 432.4 ± 22.1 16 
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